Eigenvalues and eigenvectors

From Wikipedia, the free encyclopedia
(Redirected from Eigenvalue)
Jump to: navigation, search
Illustration of a transformation (of Mona Lisa): The image is changed in such a way that the red arrow (vector) does not change its direction, but the blue one does. The red vector therefore is an eigenvector of this transformation, the blue one is not. Since the red vector does not change its length, its eigenvalue is 1. The transformation used is called shear mapping.

Linear algebra talks about functions, which are often called transformations. In that context, an eigenvector is a vector -- different from the null vector -- which does not change direction in the transformation (except if it turns the vector exactly around). The vector may change its length, or become null. The value of the change in length of the vector is known as eigenvalue.

Basics[change | change source]

If there exists a square matrix called A, a scalar λ, and a vector v, then λ is eigenvalue and v is the eigenvector if the following equation is satisfied:

A\mathbf{v} = \lambda \mathbf{v} \, .

In other words, if matrix A times the vector v is equal to the scalar λ times the vector v, then λ is the eigenvalue of v, where v is the eigenvector.

An eigenspace of A is the set of all eigenvectors with the same eigenvalue together with the zero vector. However, the zero vector is not an eigenvector.[1]

These ideas often are extended to more general situations, where scalars are elements of any field, vectors are elements of any vector space, and linear transformations may or may not be represented by matrix multiplication. For example, instead of real numbers, scalars may be complex numbers; instead of arrows, vectors may be functions or frequencies; instead of matrix multiplication, linear transformations may be operators such as the derivative from calculus. These are only a few of countless examples where eigenvectors and eigenvalues are important.

In such cases, the concept of direction loses its ordinary meaning, and is given an abstract definition. Even so, if that abstract direction is unchanged by a given linear transformation, the prefix "eigen" is used, as in eigenfunction, eigenmode, eigenface, eigenstate, and eigenfrequency.

Eigenvalues and eigenvectors have many applications in both pure and applied mathematics. They are used in matrix factorization, in quantum mechanics, facial recognition systems, and in many other areas.

Example[change | change source]

For the matrix A

A = \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix}.

the vector

\mathbf x = \begin{bmatrix} 3 \\ -3 \end{bmatrix}

is an eigenvector with eigenvalue 1. Indeed,

A \mathbf x = \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \begin{bmatrix} (2 \cdot 3) + (1 \cdot (-3)) \\ (1 \cdot 3) + (2 \cdot (-3)) \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix} = 1 \cdot \begin{bmatrix} 3 \\ -3 \end{bmatrix}.

On the other hand the vector

\mathbf x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}

is not an eigenvector, since

\begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} (2 \cdot 0) + (1 \cdot 1) \\ (1 \cdot 0) + (2 \cdot 1) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.

and this vector is not a multiple of the original vector x.


Notes[change | change source]

  1. "Eigenvector". Wolfram Research, Inc.. http://mathworld.wolfram.com/Eigenvector.html. Retrieved 29 January 2010.

References[change | change source]

  • Korn, Granino A.; Korn, Theresa M. (2000), Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, 1152 p., Dover Publications, 2 Revised edition, ISBN 0-486-41147-8
      .
  • Lipschutz, Seymour (1991), Schaum's outline of theory and problems of linear algebra, Schaum's outline series (2nd ed.), New York, NY: McGraw-Hill Companies, ISBN 0-07-038007-4
      .
  • Friedberg, Stephen H.; Insel, Arnold J.; Spence, Lawrence E. (1989), Linear algebra (2nd ed.), Englewood Cliffs, NJ 07632: Prentice Hall, ISBN 0-13-537102-3
      .
      .
  • Strang, Gilbert (2006), Linear algebra and its applications, Thomson, Brooks/Cole, Belmont, CA, ISBN 0-030-10567-6
      .
  • Bowen, Ray M.; Wang, Chao-Cheng (1980), Linear and multilinear algebra, Plenum Press, New York, NY, ISBN 0-306-37508-7
      .
      .
      .
      .
     .
      .
  • Kline, Morris (1972), Mathematical thought from ancient to modern times, Oxford University Press, ISBN 0-195-01496-0
      .
  • Meyer, Carl D. (2000), Matrix analysis and applied linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, ISBN 978-0-89871-454-8
      .
  • Brown, Maureen (October 2004), Illuminating Patterns of Perception: An Overview of Q Methodology.
  • Golub, Gene F.; van der Vorst, Henk A. (2000), "Eigenvalue computation in the 20th century", Journal of Computational and Applied Mathematics 123: 35–65, doi:10.1016/S0377-0427(00)00413-1
     .
      .
  • Shilov, Georgi E. (1977), Linear algebra (translated and edited by Richard A. Silverman ed.), New York: Dover Publications, ISBN 0-486-63518-X
      .
      .
      .
  • Pigolkina, T. S. and Shulman, V. S., Eigenvalue (in Russian), In:Vinogradov, I. M. (Ed.), Mathematical Encyclopedia, Vol. 5, Soviet Encyclopedia, Moscow, 1977.
  • Greub, Werner H. (1975), Linear Algebra (4th Edition), Springer-Verlag, New York, NY, ISBN 0-387-90110-8
      .
  • Larson, Ron; Edwards, Bruce H. (2003), Elementary linear algebra (5th ed.), Houghton Mifflin Company, ISBN 0-618-33567-6
      .
  • Curtis, Charles W., Linear Algebra: An Introductory Approach, 347 p., Springer; 4th ed. 1984. Corr. 7th printing edition (August 19, 1999), ISBN 0-387-90992-3.
  • Shores, Thomas S. (2007), Applied linear algebra and matrix analysis, Springer Science+Business Media, LLC, ISBN 0-387-33194-8
      .
  • Sharipov, Ruslan A. (1996), Course of Linear Algebra and Multidimensional Geometry: the textbook, arXiv:math/0405323
       , ISBN 5-7477-0099-5
      .
  • Gohberg, Israel; Lancaster, Peter; Rodman, Leiba (2005), Indefinite linear algebra and applications, Basel-Boston-Berlin: Birkhäuser Verlag, ISBN 3-7643-7349-0
.

Other websites[change | change source]

Theory
Online calculators