Designer baby
The term designer baby is used sometimes, but its meaning is often not clear or simple. Most of the time, it means "influencing the quality of a child which is not yet born". The main idea is to change the genetics, of the child for the better. What is "better" is often up for debate. There are many technical, social, moral and legal issues connected to this idea. Society has scarcely begun to think about these issues. However, it is now certain that some of these ideas can, in principle, be done.[1]
Nazis in Germany were interested in genetic engineering and designer babies in the form of eugenics.
The following are brief examples of what might be done. It is not a list of what should or will be done. Some elements are already happening in some parts of the world.[2][3][4]
Choosing the gender of a child
[change | change source]In some parts of the world there is a strong preference for male children. If this was put in place, it would probably have considerable unplanned effects on those societies. However, technically, it is simple. This form of trying for desired traits in offspring happened secondary to China's one child policy, which led to abortions or abandonment of female children in the country.
One method is to conceive normally, but abort any foetus which is female. The sex of a baby is discovered by recovering cells from the sac covering the foetus. This procedure is standard, and is called amniocentesis.
Amniocentesis and stem cells
[change | change source]Recent studies have discovered that amniotic fluid is a rich source of stem cells.[5][6][7]
A benefit of getting amniotic stem cells is that risk to the foetus is low.[8] These stem cells would also, if used to treat the same individual they came from, sidestep the donor/recipient issue which has so far stymied all attempts to use donor-derived stem cells in therapies.
Artificial heart valves, working tracheas, as well as muscle, fat, bone, heart, neural and liver cells have all been engineered through use of amniotic stem cells. Tissues got from amniotic cell lines show promise for patients suffering from congenital diseases/malformations of the heart, liver, lungs, kidneys, and cerebral tissue.[9]
The first amniotic stem cells bank in the US is active in Boston, Massachusetts.[10][11][12][13] The relevance of this is that a stock of stem cells creates the possibility of surgical corrections or replacements during the life of the individual.
Identifying serious birth defects
[change | change source]The one area where there is a consensus in some societies is the need to identify serious defects in a foetus before birth. This is now routine in many countries. The definition of "serious" would certainly include defects which make life of the foetus (if born) so defective that its life would be troubled and short. Some conditions, like triple-21 Down's syndrome, are often not that serious. In many cases, the parents' wishes decide whether or not an abortion will be carried out.
Analysis of parents' DNA
[change | change source]A complete sequence analysis of an individual's DNA is possible, and costs about $5,000 US dollars. It is thought that doing so could soon become widespread, but is not often done currently. If the genetics of both parents is well understood, the possibilities for the foetus are well defined. Already, genetic counselling is given to parents who have already had a defective baby or were born with a genetic defect. One example of a genetic disease that most if not all babies are screened for at birth is cystic fibrosis. When other diseases are found, such as when they develop in adulthood, genetic counciling is sometimes offered to tell the patient about their risk of passing it on to their children in the future.
The main point is that DNA analysis would allow problems to be spotted in advance.
Analysis of the foetal DNA
[change | change source]Already, from the cells recovered by amniotic contuses, chromosome defects like triple-21 can be seen under the microscope. DNA analysis takes this a step further.
The only limitation of the analysis is the ability to understand the function of the various genes. Our understanding is limited at present, but we do understand in great detail the causes of some important genetic defects.
What can be done when defects are found
[change | change source]Until recently, the only available action was to offer abortion to the mother. This is a legal alternative in some countries. However, the coming of genetic engineering offers the potential of fixing the defects in the genes of a foetus.
Ways are being developed to change the genetic make-up of a living being. Several Nobel prizes have been awarded in the last ten or so years research related to this idea. Nobel Prize in Physiology or Medicine for:
- 2006 – Andrew Fire and Craig Mello, United States, for finding how RNA interference can switch genes on or off.[14]
- 2007 – Mario Capecchi, United States, Sir Martin Evans, United Kingdom, Oliver Smithies, United States, for finding a way to switch off genes in mouse embryonic stem cells. This leads to genetically changed mice.[15]
- 2010 – Robert Edwards, U.K., for the development of in vitro fertilization.[16]
Related pages
[change | change source]References
[change | change source]- ↑ McGee, Glenn 2000 (1997). The perfect baby: a pragmatic approach to genetics. Rowman & Littlefield. ISBN 0-8476-8344-3.
{{cite book}}
: CS1 maint: numeric names: authors list (link) - ↑ Naik, Gautam 2009 (12 February 2009). "A baby please: blond, freckles -- hold the colic". The Wall Street Journal. Retrieved 18 October 2012.
{{cite news}}
: CS1 maint: numeric names: authors list (link) - ↑ "Designer babies: Controversy over embryo selection". 9 January 2009 – via www.telegraph.co.uk.
- ↑ Silver, Lee M. (1998). Remaking Eden: cloning and beyond in a brave new world. Harper Perennial. ISBN 0-380-79243-5
- ↑ Weiss, Rick (2007-01-08). "Scientists see potential in amniotic stem cells". The Washington Post. Retrieved 2010-04-23.
- ↑ De Coppi P.; et al. (2007). "Isolation of amniotic stem cell lines with potential for therapy". Nat. Biotechnol. 25 (1): 100–6. doi:10.1038/nbt1274. PMID 17206138. S2CID 6676167.
- ↑ "Stem cells – BiocellCenter". Archived from the original on 2010-01-11. Retrieved 2010-01-11.
- ↑ perhaps as low as 1 in 1,600 (0.06%) Eddleman, Keith A.; et al. (2006). "Pregnancy loss rates after midtrimester amniocentesis". Obstet Gynecol. 108 (5): 1067–72. doi:10.1097/01.AOG.0000240135.13594.07. PMID 17077226. S2CID 19081825.
- ↑ "Stem cells scientific updates – BiocellCenter". Archived from the original on 2010-01-11. Retrieved 2010-01-11.
- ↑ "European biotech company Biocell Center opens first United States facility for preservation of amniotic stem cells in Medford, Massachusetts | Reuters". 2009-10-22. Archived from the original on 5 January 2010. Retrieved 2010-01-11.
- ↑ "Europe's Biocell Center opens Medford office – Daily Business Update – The Boston Globe". 2009-10-22. Archived from the original on 12 January 2010. Retrieved 2010-01-11.
- ↑ "The Ticker - BostonHerald.com". Archived from the original on 2012-09-21. Retrieved 2010-01-11.
- ↑ "Biocell partner with largest New England's hospital group to preserve amniotic stem cell". Archived from the original on 14 March 2010. Retrieved 2010-03-10.
- ↑ "The Nobel Prize in Physiology or Medicine 2006". Nobel Foundation. Retrieved 2007-07-28.
- ↑ "The Nobel Prize in Physiology or Medicine 2007". Nobel Foundation. Retrieved 2007-10-08.
- ↑ "The Nobel Prize in Physiology or Medicine 2010". Nobel Foundation. Retrieved 2010-10-04.