Template:Infobox element/symbol-to-oxidation-state/overview-oxidation-state

From Simple English Wikipedia, the free encyclopedia
Z Name Symbol complete main group val note
 
1 hydrogen H −1, 0, +1 (an amphoteric oxide) −1, +1 1 I
2 helium He 0 0 18 0
3 lithium Li 0[1], +1 (a strongly basic oxide) +1 1 I
4 beryllium Be 0,[2] +1,[3] +2 (an amphoteric oxide) +2 2 II
5 boron B −5, −1, 0,[4] +1, +2, +3[5][6] (a mildly acidic oxide) +3 13 III
6 carbon C −4, −3, −2, −1, 0, +1,[7] +2, +3,[8] +4[9] (a mildly acidic oxide) −4, −3, −2, −1, 0, +1, +2, +3, +4 14 IV
7 nitrogen N −3, −2, −1, 0,[10] +1, +2, +3, +4, +5 (a strongly acidic oxide) −3, +3, +5 15 V
8 oxygen O −2, −1, 0, +1, +2 −2 16 VI
9 fluorine F −1, 0[11] (oxidizes oxygen) −1 17 VII
10 neon Ne 0 0 18 0
11 sodium Na −1, 0,[12] +1 (a strongly basic oxide) +1 1 I
12 magnesium Mg 0,[13] +1,[14] +2 (a strongly basic oxide) +2 2 II
13 aluminium Al −2, −1, 0,[15] +1,[16] +2,[17] +3 (an amphoteric oxide) +3 13 III
14 silicon Si −4, −3, −2, −1, 0,[18] +1,[19] +2, +3, +4 (an amphoteric oxide) +4 14 IV
15 phosphorus P −3, −2, −1, 0,[20] +1,[21] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
16 sulfur S −2, −1, 0, +1, +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
17 chlorine Cl −1, 0, +1, +2, +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
18 argon Ar 0 0 18 0
19 potassium K −1, +1 (a strongly basic oxide) +1 1 I
20 calcium Ca +1,[22] +2 (a strongly basic oxide) +2 2 II
21 scandium Sc 0,[23] +1,[24] +2,[25] +3 (an amphoteric oxide) +3 3 III
22 titanium Ti −2, −1, 0,[26] +1, +2, +3, +4[27] (an amphoteric oxide) +2, +3, +4 4 IV
23 vanadium V −3, −1, 0, +1, +2, +3, +4, +5 (an amphoteric oxide) +2, +3, +4, +5 5 V
24 chromium Cr −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +2, +3, +6 6 VI
25 manganese Mn −3, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7 (depending on the oxidation state, an acidic, basic, or amphoteric oxide) +2, +3, +4, +6, +7 7 VII
26 iron Fe −4, −2, −1, 0, +1,[28] +2, +3, +4, +5,[29] +6, +7[30] (an amphoteric oxide) +2, +3 8 VIII
27 cobalt Co −3, −1, 0, +1, +2, +3, +4, +5[31] (an amphoteric oxide) +2, +3 9 VIII
28 nickel Ni −2, −1, 0, +1,[32] +2, +3, +4[33] (a mildly basic oxide) +2 10 VIII
29 copper Cu −2, 0,[34] +1, +2, +3, +4 (a mildly basic oxide) +1, +2 11 I
30 zinc Zn −2, 0, +1, +2 (an amphoteric oxide) +2 12 II
31 gallium Ga −5, −4, −3,[35] −2, −1, 0, +1, +2, +3[36] (an amphoteric oxide) +3 13 III
32 germanium Ge −4, −3, −2, −1, 0,[37] +1, +2, +3, +4 (an amphoteric oxide) +2, +4 14 IV
33 arsenic As −3, −2, −1, 0,[38] +1,[39] +2, +3, +4, +5 (a mildly acidic oxide) −3, +3, +5 15 V
34 selenium Se −2, −1, 0,[40] +1,[41] +2, +3, +4, +5, +6 (a strongly acidic oxide) −2, +2, +4, +6 16 VI
35 bromine Br −1, 0, +1, +2,[42] +3, +4, +5, +7 (a strongly acidic oxide) −1, +1, +3, +5 17 VII
36 krypton Kr 0, +1, +2 (rarely more than 0; oxide is unknown) 0 18 0
37 rubidium Rb −1, +1 (a strongly basic oxide) +1 1 I
38 strontium Sr +1,[43] +2 (a strongly basic oxide) +2 2 II
39 yttrium Y 0,[44] +1, +2, +3 (a weakly basic oxide) +3 3 III
40 zirconium Zr −2, 0, +1,[45] +2, +3, +4 (an amphoteric oxide) +4 4 IV
41 niobium Nb −3, −1, 0, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
42 molybdenum Mo −4, −2, −1, 0, +1,[46] +2, +3, +4, +5, +6 (a strongly acidic oxide) +4, +6 6 VI
43 technetium Tc −3, −1, 0, +1,[47] +2, +3,[47] +4, +5, +6, +7 (a strongly acidic oxide) +4, +7 7 VII
44 ruthenium Ru −4, −2, 0, +1,[48] +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +3, +4 8 VIII
45 rhodium Rh −3[49], −1, 0, +1,[50] +2, +3, +4, +5, +6, +7[51] (an amphoteric oxide) +3 9 VIII
46 palladium Pd 0, +1, +2, +3, +4, +5[52] (a mildly basic oxide) 0, +2, +4 10 VIII
47 silver Ag −2, −1, 0,[53] +1, +2, +3 (an amphoteric oxide) +1 11 I
48 cadmium Cd −2, +1, +2 (a mildly basic oxide) +2 12 II
49 indium In −5, −2, −1, 0,[54] +1, +2, +3[55] (an amphoteric oxide) +3 13 III
50 tin Sn −4, −3, −2, −1, 0,[56] +1,[57] +2, +3,[58] +4 (an amphoteric oxide) +2, +4 14 IV
51 antimony Sb −3, −2, −1, 0,[59] +1, +2, +3, +4, +5 (an amphoteric oxide) +3, +5 15 V
52 tellurium Te −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) −2, +2, +4, +6 16 VI
53 iodine I −1, 0, +1, +2,[60] +3, +4, +5, +6, +7 (a strongly acidic oxide) −1, +1, +3, +5, +7 17 VII
54 xenon Xe 0, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide) 0 18 0
55 caesium Cs −1, +1[61] (a strongly basic oxide) +1 1 I
56 barium Ba +1, +2 (a strongly basic oxide) +2 2 II
57 lanthanum La 0,[44] +1,[62] +2, +3 (a strongly basic oxide) +3 f-block groups -
58 cerium Ce +1, +2, +3, +4 (a mildly basic oxide) +3, +4 f-block groups -
59 praseodymium Pr 0,[44] +1,[63] +2, +3, +4, +5 (a mildly basic oxide) +3 f-block groups -
60 neodymium Nd 0,[44] +2, +3, +4 (a mildly basic oxide) +3 f-block groups -
61 promethium Pm +2, +3 (a mildly basic oxide) +3 f-block groups -
62 samarium Sm 0,[44] +1,[64] +2, +3 (a mildly basic oxide) +3 f-block groups -
63 europium Eu 0,[44] +2, +3 (a mildly basic oxide) +2, +3 f-block groups -
64 gadolinium Gd 0,[44] +1, +2, +3 (a mildly basic oxide) +3 f-block groups -
65 terbium Tb 0,[44] +1,[62] +2, +3, +4 (a weakly basic oxide) +3 f-block groups -
66 dysprosium Dy 0,[44] +1, +2, +3, +4 (a weakly basic oxide) +3 f-block groups -
67 holmium Ho 0,[44] +1, +2, +3 (a basic oxide) +3 f-block groups -
68 erbium Er 0,[44] +1, +2, +3 (a basic oxide) +3 f-block groups -
69 thulium Tm 0,[44] +1,[62] +2, +3 (a basic oxide) +3 f-block groups -
70 ytterbium Yb 0,[44] +1,[62] +2, +3 (a basic oxide) +3 f-block groups -
71 lutetium Lu 0,[44] +1, +2, +3 (a weakly basic oxide) +3 3 III
72 hafnium Hf −2, 0, +1, +2, +3, +4 (an amphoteric oxide) +4 4 IV
73 tantalum Ta −3, −1, 0, +1, +2, +3, +4, +5 (a mildly acidic oxide) +5 5 V
74 tungsten W −4, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly acidic oxide) +4, +6 6 VI
75 rhenium Re −3, −1, 0, +1, +2, +3, +4, +5, +6, +7 (a mildly acidic oxide) +3, +4, +7 7 VII
76 osmium Os −4, −2, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8 (a mildly acidic oxide) +2, +3, +4, +8 8 VIII
77 iridium Ir −3, −1, 0, +1, +2, +3, +4, +5, +6, +7, +8, +9[65] +1, +3, +4 9 VIII
78 platinum Pt −3, −2, −1, 0, +1, +2, +3, +4, +5, +6 (a mildly basic oxide) +2, +4 10 VIII
79 gold Au −3, −2, −1, 0,[66] +1, +2, +3, +5 (an amphoteric oxide) +1, +3 11 I
80 mercury Hg −2 , +1, +2 (a mildly basic oxide) +1, +2 12 II
81 thallium Tl −5,[67] −2, −1, +1, +2, +3 (a mildly basic oxide) +1, +3 13 III
82 lead Pb −4, −2, −1, 0,[68] +1, +2, +3, +4 (an amphoteric oxide) +2, +4 14 IV
83 bismuth Bi −3, −2, −1, 0,[69] +1, +2, +3, +4, +5 (a mildly acidic oxide) +3 15 V
84 polonium Po −2, +2, +4, +5,[70] +6 (an amphoteric oxide) −2, +2, +4 16 VI
85 astatine At −1, +1, +3, +5, +7[71] −1, +1 17 VII
86 radon Rn 0, +2, +6 0 18 0
87 francium Fr +1 (expected to have a strongly basic oxide) +1 1 I
88 radium Ra +2 (expected to have a strongly basic oxide) +2 2 II
89 actinium Ac +3 (a strongly basic oxide) +3 f-block groups -
90 thorium Th −1,[72] +1, +2, +3, +4 (a weakly basic oxide) +4 f-block groups -
91 protactinium Pa +2, +3, +4, +5 (a weakly basic oxide) +5 f-block groups -
92 uranium U −1,[72] +1, +2, +3,[73] +4, +5, +6 (an amphoteric oxide) +4, +6 f-block groups -
93 neptunium Np +2, +3, +4,[74] +5, +6, +7 (an amphoteric oxide) +5 f-block groups -
94 plutonium Pu +2, +3, +4, +5, +6, +7, +8 (an amphoteric oxide) +4 f-block groups -
95 americium Am +2, +3, +4, +5, +6, +7 (an amphoteric oxide) +3 f-block groups -
96 curium Cm +3, +4, +5,[75] +6[76] (an amphoteric oxide) +3 f-block groups -
97 berkelium Bk +2, +3, +4, +5[75] +3 f-block groups -
98 californium Cf +2, +3, +4, +5[77][75] +3 f-block groups -
99 einsteinium Es +2, +3, +4 +3 f-block groups -
100 fermium Fm +2, +3 +3 f-block groups -
101 mendelevium Md +2, +3 +3 f-block groups -
102 nobelium No +2, +3 +2 f-block groups -
103 lawrencium Lr +3 +3 3 III
104 rutherfordium Rf (+2), (+3), +4[78][79][80] (parenthesized: prediction) (+3), +4 (parenthesized: prediction) 4 IV
105 dubnium Db (+3), (+4), +5[79][80] (parenthesized: prediction) +5 5 V
106 seaborgium Sg 0, (+3), (+4), (+5), +6[79][80] (parenthesized: prediction) (+4), +6 (parenthesized: prediction) 6 VI
107 bohrium Bh (+3), (+4), (+5), +7[79][80] (parenthesized: prediction) (+3), (+4), (+5), +7 (parenthesized: prediction) 7 VII
108 hassium Hs (+2), (+3), (+4), (+6), +8[81][80][82] (parenthesized: prediction) (+3), (+4) (parenthesized: prediction) 8 VIII
109 meitnerium Mt (+1), (+3), (+4), (+6), (+8), (+9) (predicted)[79][83][84][80] (+1), (+3), (+6) (predicted) 9 VIII
110 darmstadtium Ds (0), (+2), (+4), (+6), (+8) (predicted)[79][80] (0), (+2), (+4) (predicted) 10 VIII
111 roentgenium Rg (−1), (+1), (+3), (+5), (+7) (predicted)[79][80][85] (+3) (predicted) 11 I
112 copernicium Cn 0, (+1), +2, (+4), (+6) (parenthesized: prediction)[79][86][80][87] 0, +2 12 II
113 nihonium Nh (−1), (+1), (+3), (+5) (predicted)[79][80][88] (+1), (+3) (predicted) 13 III
114 flerovium Fl (0), (+1), (+2), (+4), (+6) (predicted)[79][80][89] (+2) (predicted) 14 IV
115 moscovium Mc (+1), (+3) (predicted)[79][80] (+1), (+3) (predicted) 15 V
116 livermorium Lv (−2),[90] (+2), (+4) (predicted)[79] (+2) (predicted) 16 VI
117 tennessine Ts (−1), (+1), (+3), (+5) (predicted)[80][79] (+1), (+3) (predicted) 17 VII
118 oganesson Og (−1),[79] (0), (+1),[91] (+2),[92] (+4),[92] (+6)[79] (predicted) (+2), (+4) (predicted) 18 0
119 ununennium Uue (+1), (+3), (+5) (predicted)[79][93] (+1) (predicted) 1 I
120 unbinilium Ubn (+1),[94] (+2), (+4), (+6) (predicted)[79][93] (+2) (predicted) 2 II
121 unbiunium Ubu (+1), (+3) (predicted)[79][95] (+3) (predicted) g-block groups -
122 unbibium Ubb (+4) (predicted)[96] (+4) (predicted) g-block groups -
123 unbitrium Ubt (+5) (predicted)[96] (+5) (predicted) g-block groups -
124 unbiquadium Ubq (+6) (predicted)[96] (+6) (predicted) g-block groups -
125 unbipentium Ubp (+1), (+6), (+7) (predicted)[96] (+6), (+7) (predicted) g-block groups -
126 unbihexium Ubh (+1), (+2), (+4), (+6), (+8) (predicted)[96] (+4), (+6), (+8) (predicted) g-block groups -

References[change source]

  1. Li(0) atoms have been observed in various small lithium-chloride clusters; see Milovanović, Milan; Veličković, Suzana; Veljkovićb, Filip; Jerosimić, Stanka (October 30, 2017). "Structure and stability of small lithium-chloride LinClm(0,1+) (n ≥ m, n = 1–6, m = 1–3) clusters". Physical Chemistry Chemical Physics. 19 (45): 30481–30497. doi:10.1039/C7CP04181K. PMID 29114648.
  2. Be(0) has been observed; see "Beryllium(0) Complex Found". Chemistry Europe. 13 June 2016.
  3. "Beryllium: Beryllium(I) Hydride compound data" (PDF). bernath.uwaterloo.ca. Retrieved 2007-12-10.
  4. Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. (2012). "Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond". Science. 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
  5. Zhang, K.Q.; Guo, B.; Braun, V.; Dulick, M.; Bernath, P.F. (1995). "Infrared Emission Spectroscopy of BF and AIF" (PDF). J. Molecular Spectroscopy. 170 (1): 82. Bibcode:1995JMoSp.170...82Z. doi:10.1006/jmsp.1995.1058.
  6. Schroeder, Melanie. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden (PDF) (in German). p. 139.
  7. "Fourier Transform Spectroscopy of the Electronic Transition of the Jet-Cooled CCI Free Radical" (PDF). Retrieved 2007-12-06.
  8. "Fourier Transform Spectroscopy of the System of CP" (PDF). Retrieved 2007-12-06.
  9. "Carbon: Binary compounds". Retrieved 2007-12-06.
  10. Tetrazoles contain a pair of double-bonded nitrogen atoms with oxidation state 0 in the ring. A Synthesis of the parent 1H-tetrazole, CH2N4 (two atoms N(0)) is given in Ronald A. Henry and William G. Finnegan, "An Improved Procedure for the Deamination of 5-Aminotetrazole", _J. Am. Chem. Soc._ (1954), 76, 1, 290–291, https://doi.org/10.1021/ja01630a086.
  11. Himmel, D.; Riedel, S. (2007). "After 20 Years, Theoretical Evidence That 'AuF7' Is Actually AuF5·F2". Inorganic Chemistry. 46 (13). 5338–5342. doi:10.1021/ic700431s.
  12. The compound NaCl has been shown in experiments to exists in several unusual stoichiometries under high pressure, including Na3Cl in which contains a layer of sodium(0) atoms; see Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konôpková, Z. (2013). "Unexpected Stable Stoichiometries of Sodium Chlorides". Science. 342 (6165): 1502–1505. arXiv:1310.7674. Bibcode:2013Sci...342.1502Z. doi:10.1126/science.1244989. PMID 24357316. S2CID 15298372.
  13. Mg(0) has been synthesized in a compound containing a Na2Mg22+ cluster coordinated to a bulky organic ligand; see Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Li, W.; Harder, S. (2021). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274. S2CID 233447380
  14. Bernath, P. F.; Black, J. H. & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.. See also Low valent magnesium compounds.
  15. Unstable carbonyl of Al(0) has been detected in reaction of Al2(CH3)6 with carbon monoxide; see Sanchez, Ramiro; Arrington, Caleb; Arrington Jr., C. A. (December 1, 1989). "Reaction of trimethylaluminum with carbon monoxide in low-temperature matrixes". American Chemical Society. 111 (25): 9110-9111. doi:10.1021/ja00207a023. OSTI 6973516.
  16. Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition. 35 (2): 129–149. doi:10.1002/anie.199601291.
  17. Tyte, D. C. (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature. 202 (4930): 383. Bibcode:1964Natur.202..383T. doi:10.1038/202383a0. S2CID 4163250.
  18. "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
  19. Ram, R. S.; et al. (1998). "Fourier Transform Emission Spectroscopy of the A2D–X2P Transition of SiH and SiD" (PDF). J. Mol. Spectr. 190 (2): 341–352. doi:10.1006/jmsp.1998.7582. PMID 9668026.
  20. Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. (2008). "Carbene-Stabilized Diphosphorus". Journal of the American Chemical Society. 130 (45): 14970–1. doi:10.1021/ja807828t. PMID 18937460.
  21. Ellis, Bobby D.; MacDonald, Charles L. B. (2006). "Phosphorus(I) Iodide: A Versatile Metathesis Reagent for the Synthesis of Low Oxidation State Phosphorus Compounds". Inorganic Chemistry. 45 (17): 6864–74. doi:10.1021/ic060186o. PMID 16903744.
  22. Krieck, Sven; Görls, Helmar; Westerhausen, Matthias (2010). "Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes". Journal of the American Chemical Society. 132 (35): 12492–12501. doi:10.1021/ja105534w. PMID 20718434.
  23. Cloke, F. Geoffrey N.; Khan, Karl & Perutz, Robin N. (1991). "η-Arene complexes of scandium(0) and scandium(II)". J. Chem. Soc., Chem. Commun. (19): 1372–1373. doi:10.1039/C39910001372.
  24. Smith, R. E. (1973). "Diatomic Hydride and Deuteride Spectra of the Second Row Transition Metals". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 332 (1588): 113–127. Bibcode:1973RSPSA.332..113S. doi:10.1098/rspa.1973.0015. S2CID 96908213.
  25. McGuire, Joseph C.; Kempter, Charles P. (1960). "Preparation and Properties of Scandium Dihydride". Journal of Chemical Physics. 33 (5): 1584–1585. Bibcode:1960JChPh..33.1584M. doi:10.1063/1.1731452.
  26. Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G. Jr.; Ellis, John E. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6:[Ti(CO)4(S2CNR2)]". Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID 17579764.
  27. Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
  28. Ram, R. S.; Bernath, P. F. (2003). "Fourier transform emission spectroscopy of the g4Δ–a4Δ system of FeCl". Journal of Molecular Spectroscopy. 221 (2): 261. Bibcode:2003JMoSp.221..261R. doi:10.1016/S0022-2852(03)00225-X.
  29. Demazeau, G.; Buffat, B.; Pouchard, M.; Hagenmuller, P. (1982). "Recent developments in the field of high oxidation states of transition elements in oxides stabilization of six-coordinated Iron(V)". Zeitschrift für anorganische und allgemeine Chemie. 491: 60–66. doi:10.1002/zaac.19824910109.
  30. Lu, J.; Jian, J.; Huang, W.; Lin, H.; Li, J; Zhou, M. (2016). "Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4". Physical Chemistry Chemical Physics. 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. doi:10.1039/C6CP06753K. PMID 27812577.
  31. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
  32. Pfirrmann, Stefan; Limberg, Christian; Herwig, Christian; Stößer, Reinhard; Ziemer, Burkhard (2009). "A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps". Angewandte Chemie International Edition. 48 (18): 3357–61. doi:10.1002/anie.200805862. PMID 19322853.
  33. Carnes, Matthew; Buccella, Daniela; Chen, Judy Y.-C.; Ramirez, Arthur P.; Turro, Nicholas J.; Nuckolls, Colin; Steigerwald, Michael (2009). "A Stable Tetraalkyl Complex of Nickel(IV)". Angewandte Chemie International Edition. 48 (2): 290–4. doi:10.1002/anie.200804435. PMID 19021174.
  34. Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. (2013). "A Polar Copper–Boron One-Electron σ-Bond". J. Am. Chem. Soc. 135 (10): 3792–3795. doi:10.1021/ja4006578. PMID 23418750.
  35. Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline (2011). "Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen" (PDF). Z. Naturforsch. (in German). 66b: 1107–1121.
  36. Hofmann, Patrick (1997). Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF) (Thesis) (in German). PhD Thesis, ETH Zurich. p. 72. doi:10.3929/ethz-a-001859893. hdl:20.500.11850/143357. ISBN 978-3728125972.
  37. "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
  38. Abraham, Mariham Y.; Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Shaefer III, Henry F.; Schleyer, P. von R.; Robinson, Gregory H. (2010). "Carbene Stabilization of Diarsenic: From Hypervalency to Allotropy". Chemistry: A European Journal. 16 (2): 432–5. doi:10.1002/chem.200902840. PMID 19937872.
  39. Ellis, Bobby D.; MacDonald, Charles L. B. (2004). "Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters". Inorganic Chemistry. 43 (19): 5981–6. doi:10.1021/ic049281s. PMID 15360247.
  40. A Se(0) atom has been identified using DFT in [ReOSe(2-pySe)3]; see Cargnelutti, Roberta; Lang, Ernesto S.; Piquini, Paulo; Abram, Ulrich (2014). "Synthesis and structure of [ReOSe(2-Se-py)3]: A rhenium(V) complex with selenium(0) as a ligand". Inorganic Chemistry Communications. 45: 48–50. doi:10.1016/j.inoche.2014.04.003. ISSN 1387-7003.
  41. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  42. Br(II) is known to occur in bromine monoxide radical; see Kinetics of the bromine monoxide radical + bromine monoxide radical reaction
  43. Colarusso, P.; Guo, B.; Zhang, K.-Q.; Bernath, P. F. (1996). "High-Resolution Infrared Emission Spectrum of Strontium Monofluoride" (PDF). J. Molecular Spectroscopy. 175 (1): 158. Bibcode:1996JMoSp.175..158C. doi:10.1006/jmsp.1996.0019.
  44. 44.00 44.01 44.02 44.03 44.04 44.05 44.06 44.07 44.08 44.09 44.10 44.11 44.12 44.13 Yttrium and all lanthanides except Ce and Pm have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, see Cloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides". Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. and Arnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation". Journal of Organometallic Chemistry. 688 (1–2): 49–55. doi:10.1016/j.jorganchem.2003.08.028.
  45. "Zirconium: zirconium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  46. "Molybdenum: molybdenum(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  47. 47.0 47.1 "Technetium: technetium(III) iodide compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  48. "Ruthenium: ruthenium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  49. Ellis J E. Highly Reduced Metal Carbonyl Anions: Synthesis, Characterization, and Chemical Properties. Adv. Organomet. Chem, 1990, 31: 1-51.
  50. "Rhodium: rhodium(I) fluoride compound data". OpenMOPAC.net. Retrieved 2007-12-10.
  51. Rh(VII) is known in the RhO3+ cation, see Da Silva Santos, Mayara; Stüker, Tony; Flach, Max; Ablyasova, Olesya S.; Timm, Martin; von Issendorff, Bernd; Hirsch, Konstantin; Zamudio‐Bayer, Vicente; Riedel, Sebastian; Lau, J. Tobias (2022). "The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+". Angew. Chem. Int. Ed. 61 (38): e202207688. doi:10.1002/anie.202207688. PMC 9544489. PMID 35818987.
  52. Palladium(V) has been identified in complexes with organosilicon compounds containing pentacoordinate palladium; see Shimada, Shigeru; Li, Yong-Hua; Choe, Yoong-Kee; Tanaka, Masato; Bao, Ming; Uchimaru, Tadafumi (2007). "Multinuclear palladium compounds containing palladium centers ligated by five silicon atoms". Proceedings of the National Academy of Sciences. 104 (19): 7758–7763. doi:10.1073/pnas.0700450104. PMC 1876520. PMID 17470819.
  53. Ag(0) has been observed in carbonyl complexes in low-temperature matrices: see McIntosh, D.; Ozin, G. A. (1976). "Synthesis using metal vapors. Silver carbonyls. Matrix infrared, ultraviolet-visible, and electron spin resonance spectra, structures, and bonding of silver tricarbonyl, silver dicarbonyl, silver monocarbonyl, and disilver hexacarbonyl". J. Am. Chem. Soc. 98 (11): 3167–75. doi:10.1021/ja00427a018.
  54. Unstable In(0) carbonyls and clusters have been detected, see [1], p. 6.
  55. Guloy, A. M.; Corbett, J. D. (1996). "Synthesis, Structure, and Bonding of Two Lanthanum Indium Germanides with Novel Structures and Properties". Inorganic Chemistry. 35 (9): 2616–22. doi:10.1021/ic951378e. PMID 11666477.
  56. "New Type of Zero-Valent Tin Compound". Chemistry Europe. 27 August 2016.
  57. "HSn". NIST Chemistry WebBook. National Institute of Standards and Technology. Retrieved 23 January 2013.
  58. "SnH3". NIST Chemistry WebBook. National Institure of Standards and Technology. Retrieved 23 January 2013.
  59. Anastas Sidiropoulos (2019). "Studies of N-heterocyclic Carbene (NHC) Complexes of the Main Group Elements" (PDF). p. 39. doi:10.4225/03/5B0F4BDF98F60. S2CID 132399530.
  60. I(II) is known to exist in monoxide (IO); see Nikitin, I V (31 August 2008). "Halogen monoxides". Russian Chemical Reviews. 77 (8): 739–749. Bibcode:2008RuCRv..77..739N. doi:10.1070/RC2008v077n08ABEH003788. S2CID 250898175.
  61. Dye, J. L. (1979). "Compounds of Alkali Metal Anions". Angewandte Chemie International Edition. 18 (8): 587–598. doi:10.1002/anie.197905871.
  62. 62.0 62.1 62.2 62.3 La(I), Pr(I), Tb(I), Tm(I), and Yb(I) have been observed in MB8 clusters; see Li, Wan-Lu; Chen, Teng-Teng; Chen, Wei-Jia; Li, Jun; Wang, Lai-Sheng (2021). "Monovalent lanthanide(I) in borozene complexes". Nature Communications. 12 (1): 6467. doi:10.1038/s41467-021-26785-9. PMC 8578558. PMID 34753931.
  63. Chen, Xin; et al. (2019-12-13). "Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. PMID 30543295. S2CID 56148031.
  64. SmB6- cluster anion has been reported and contains Sm in rare oxidation state of +1; see Paul, J. Robinson; Xinxing, Zhang; Tyrel, McQueen; Kit, H. Bowen; Anastassia, N. Alexandrova (2017). "SmB6 Cluster Anion: Covalency Involving f Orbitals". J. Phys. Chem. A 2017, 121, 8, 1849–1854. 121 (8): 1849–1854. doi:10.1021/acs.jpca.7b00247. PMID 28182423. S2CID 3723987..
  65. Wang, Guanjun; Zhou, Mingfei; Goettel, James T.; Schrobilgen, Gary G.; Su, Jing; Li, Jun; Schlöder, Tobias; Riedel, Sebastian (2014). "Identification of an iridium-containing compound with a formal oxidation state of IX". Nature. 514 (7523): 475–477. Bibcode:2014Natur.514..475W. doi:10.1038/nature13795. PMID 25341786. S2CID 4463905.
  66. Mézaille, Nicolas; Avarvari, Narcis; Maigrot, Nicole; Ricard, Louis; Mathey, François; Le Floch, Pascal; Cataldo, Laurent; Berclaz, Théo; Geoffroy, Michel (1999). "Gold(I) and Gold(0) Complexes of Phosphinine‐Based Macrocycles". Angewandte Chemie International Edition. 38 (21): 3194–3197. doi:10.1002/(SICI)1521-3773(19991102)38:21<3194::AID-ANIE3194>3.0.CO;2-O. PMID 10556900.
  67. Dong, Z.-C.; Corbett, J. D. (1996). "Na23K9Tl15.3: An Unusual Zintl Compound Containing Apparent Tl57−, Tl48−, Tl37−, and Tl5− Anions". Inorganic Chemistry. 35 (11): 3107–12. doi:10.1021/ic960014z. PMID 11666505.
  68. Pb(0) carbonyls have been observered in reaction between lead atoms and carbon monoxide; see Ling, Jiang; Qiang, Xu (2005). "Observation of the lead carbonyls PbnCO (n=1–4): Reactions of lead atoms and small clusters with carbon monoxide in solid argon". The Journal of Chemical Physics. 122 (3): 034505. 122 (3): 34505. Bibcode:2005JChPh.122c4505J. doi:10.1063/1.1834915. ISSN 0021-9606. PMID 15740207.
  69. Bi(0) state exists in a N-heterocyclic carbene complex of dibismuthene; see Deka, Rajesh; Orthaber, Andreas (May 6, 2022). "Carbene chemistry of arsenic, antimony, and bismuth: origin, evolution and future prospects". Royal Society of Chemistry. 51 (22): 8540–8556. doi:10.1039/d2dt00755j. PMID 35578901. S2CID 248675805.
  70. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 78. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  71. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  72. 72.0 72.1 Th(-I) and U(-I) have been detected in the gas phase as octacarbonyl anions; see Chaoxian, Chi; Sudip, Pan; Jiaye, Jin; Luyan, Meng; Mingbiao, Luo; Lili, Zhao; Mingfei, Zhou; Gernot, Frenking (2019). "Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding". Chemistry (Weinheim an der Bergstrasse, Germany). 25 (50): 11772–11784. 25 (50): 11772–11784. doi:10.1002/chem.201902625. ISSN 0947-6539. PMC 6772027. PMID 31276242.
  73. Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Netherlands: Springer. ISBN 978-9048131464.
  74. Np(II), (III) and (IV) have been observed, see Dutkiewicz, Michał S.; Apostolidis, Christos; Walter, Olaf; Arnold, Polly L (2017). "Reduction chemistry of neptunium cyclopentadienide complexes: from structure to understanding". Chem. Sci. 8 (4): 2553–2561. doi:10.1039/C7SC00034K. PMC 5431675. PMID 28553487.
  75. 75.0 75.1 75.2 Kovács, Attila; Dau, Phuong D.; Marçalo, Joaquim; Gibson, John K. (2018). "Pentavalent Curium, Berkelium, and Californium in Nitrate Complexes: Extending Actinide Chemistry and Oxidation States". Inorg. Chem. 57 (15). American Chemical Society: 9453–9467. doi:10.1021/acs.inorgchem.8b01450. OSTI 1631597. PMID 30040397. S2CID 51717837.
  76. Domanov, V. P.; Lobanov, Yu. V. (October 2011). "Formation of volatile curium(VI) trioxide CmO3". Radiochemistry. 53 (5). SP MAIK Nauka/Interperiodica: 453–6. doi:10.1134/S1066362211050018. S2CID 98052484.
  77. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 1265. ISBN 978-0-08-037941-8.
  78. "Rutherfordium". Royal Chemical Society. Retrieved 2019-09-21.
  79. 79.00 79.01 79.02 79.03 79.04 79.05 79.06 79.07 79.08 79.09 79.10 79.11 79.12 79.13 79.14 79.15 79.16 79.17 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  80. 80.00 80.01 80.02 80.03 80.04 80.05 80.06 80.07 80.08 80.09 80.10 80.11 80.12 Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
  81. Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1691. ISBN 978-1-4020-3555-5.
  82. Düllmann, C. E. (2008). Investigation of group 8 metallocenes @ TASCA (PDF). 7th Workshop on Recoil Separator for Superheavy Element Chemistry TASCA 08. Archived from the original (PDF) on 30 April 2014. Retrieved 28 August 2020.
  83. Ionova, G. V.; Ionova, I. S.; Mikhalko, V. K.; Gerasimova, G. A.; Kostrubov, Yu. N.; Suraeva, N. I. (2004). "Halides of Tetravalent Transactinides (Rf, Db, Sg, Bh, Hs, Mt, 110th Element): Physicochemical Properties". Russian Journal of Coordination Chemistry. 30 (5): 352. doi:10.1023/B:RUCO.0000026006.39497.82. S2CID 96127012.
  84. Himmel, Daniel; Knapp, Carsten; Patzschke, Michael; Riedel, Sebastian (2010). "How Far Can We Go? Quantum-Chemical Investigations of Oxidation State +IX". ChemPhysChem. 11 (4): 865–9. doi:10.1002/cphc.200900910. PMID 20127784.
  85. Conradie, Jeanet; Ghosh, Abhik (15 June 2019). "Theoretical Search for the Highest Valence States of the Coinage Metals: Roentgenium Heptafluoride May Exist". Inorganic Chemistry. 2019 (58): 8735–8738. doi:10.1021/acs.inorgchem.9b01139. PMID 31203606. S2CID 189944098.
  86. Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. doi:10.1007/978-3-642-37466-1_8. ISBN 978-3-642-37465-4. Retrieved 2018-04-21.
  87. Hu, Shu-Xian; Zou, Wenli (23 September 2021). "Stable copernicium hexafluoride (CnF6) with an oxidation state of VI+". Physical Chemistry Chemical Physics. 2022 (24): 321–325. doi:10.1039/D1CP04360A. PMID 34889909.
  88. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.). Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer. pp. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  89. Schwerdtfeger, Peter; Seth, Michael (2002). "Relativistic Quantum Chemistry of the Superheavy Elements. Closed-Shell Element 114 as a Case Study" (PDF). Journal of Nuclear and Radiochemical Sciences. 3 (1): 133–136. doi:10.14494/jnrs2000.3.133. Retrieved 12 September 2014.
  90. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 83. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  91. Han, Young-Kyu; Bae, Cheolbeom; Son, Sang-Kil; Lee, Yoon Sup (2000). "Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118)". Journal of Chemical Physics. 112 (6): 2684. Bibcode:2000JChPh.112.2684H. doi:10.1063/1.480842.
  92. 92.0 92.1 Kaldor, Uzi; Wilson, Stephen (2003). Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Springer. p. 105. ISBN 978-1402013713. Retrieved 2008-01-18.
  93. 93.0 93.1 Cao, Chang-Su; Hu, Han-Shi; Schwarz, W. H. Eugen; Li, Jun (2022). "Periodic Law of Chemistry Overturns for Superheavy Elements". ChemRxiv (preprint). doi:10.26434/chemrxiv-2022-l798p. Retrieved 16 November 2022.
  94. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. 10: 84. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  95. Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M. (12 September 2016). "4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on rovibrational spectra". Chemical Physics Letters. 662: 169–175. Bibcode:2016CPL...662..169A. doi:10.1016/j.cplett.2016.09.025. hdl:11449/168956.
  96. 96.0 96.1 96.2 96.3 96.4 Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.

See also[change source]