Callisto (moon)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Callisto
Callisto
Image of Callisto obtained in 2001 by NASA's Galileo spacecraft (Courtesy NASA/JPL-Caltech)
Discovery
Discovered by G. Galilei
S. Marius[1]
Discovery time January 7, 1610[1]
Orbit
Shortest distance from what it orbits around 1,869,000 km[2]
Longest distance from what it orbits around 1,897,000 km[2]
Avgdistance from the center of its orbital path 1,882,700 km[3]
How egg-shaped its orbit is
("eccentricity")
0.0074[3]
How long it takes to complete an orbit 16.6890184 d[3]
Average speed 8.204 km/s[2]
Angle above the reference plane
("inclination")
0.192° (to Jupiter's equator)[3]
What it orbits Jupiter
Size and Other Qualities
Average distance from its center to its surface 2410.3 ± 1.5 km (0.378 Earths)[4]
Area of its surface 7.30×107 km² (0.143 Earths)[2]
Volume inside it 5.9×1010 km³ (0.0541 Earths)[2]
Mass 1.075938 ± 0.000137×1023 kg (0.018 Earths)[4]
Average density 1.8344 ± 0.0034 g/cm³[4]
Gravity at its surface 1.235 m/s2 (0.126 g)[2]
Slowest speed able to escape into space
("escape velocity")
2.440 km/s[2]
How long it takes to turn around one time synchronous[4]
Angle at which it turns
(in relation to its orbit)
zero[4]
How much light it reflects 0.22 (geometric)[5]
Surface temp. Min. Avg. Max.
K[5] 80±5 134±11 165±5
Seeming brightness
("apparent magnitude")
5.65 (opposition)[6]
Air
Make up ~4×108 cm-3 carbon dioxide[7]
up to 2×1010 cm-3 molecular oxygen[8]

Callisto is a moon of the planet Jupiter, discovered in 1610 by Galileo Galilei.[1] It is the second largest moon orbiting Jupiter, after Ganymede, and the third largest moon in the Solar System.[9] Callisto is almost the same size as the planet Mercury, being 99% the diameter of the planet, but is much less massive. Of the four Galilean moons of Jupiter, Callisto is the farthest, with an orbital radius of about 1,880,000 kilometres.[3] It does not form part of the orbital resonance that affects three inner Galilean satellites, Io, Europa and Ganymede.[10] Like the Earth's Moon, Callisto rotates synchronously with its orbital period. This means that one side is always turned toward Jupiter, while the other side never sees the face of the planet. Callisto's surface is less affected by Jupiter's magnetosphere than the other inner satellites because it orbits farther away.[11]

Callisto is composed of approximately equal amounts of rock and ices, with an average density of about 1.83 g/cm³. Compounds on the surface include water ice, carbon dioxide, silicates, and organics. The Galileo spacecraft made investigations of the moon, and revealed that Callisto may have a small silicate core and possibly a subsurface ocean of liquid water more than 100 kilometers deep.[12][13]

The surface of Callisto is heavily cratered and extremely old. The surface does not show any sign of processes occurring below the surface such as plate tectonics, earthquakes or volcanoes, and is thought to have evolved mainly under the influence of meteorite impacts.[14] Notable surface features include multi-ring structures, impact craters in different shapes, and chains of craters (known as catenae) and associated scarps, ridges and deposits.[14] On a smaller scale, the surface is diverse and is made up of small bright frost deposits at around hill tops, surrounded by a smooth blanket of dark material in valleys.[5] This is thought to result from the degradation of small landforms, caused through sublimation, which is supported by the general lack of small impact craters and the presence of numerous small knobs, considered to be their remains.[15] The absolute ages of the landforms are not known.

Callisto is surrounded by an extremely thin atmosphere made out of carbon dioxide and probably molecular oxygen, as well as by a rather intense ionosphere.[16] An ocean is thought to exist within Callisto. This may mean that life might exist. However, this is less likely than on nearby Europa.[17] Various space probes from Pioneers 1011 to Galileo and Cassini have studied the moon. Callisto has long been considered the most suitable place for humans to settle for future exploration of the Jovian system.[18]

References[change | change source]

  1. 1.0 1.1 1.2 Galilei, G.; Sidereus Nuncius (March 13, 1610)
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Calculated on the basis of other parameters
  3. 3.0 3.1 3.2 3.3 3.4 "Planetary Satellite Mean Orbital Parameters". Jet Propulsion laboratary, California Institute of Technology. http://ssd.jpl.nasa.gov/?sat_elem.
  4. 4.0 4.1 4.2 4.3 4.4 Anderson, J. D.; Jacobson, R. A.; McElrath, T. P.; et al. (2001). "Shape, mean radius, gravity field and interior structure of Callisto". Icarus 153: 157–161. doi:10.1006/icar.2001.6664. http://adsabs.harvard.edu/abs/2001Icar..153..157A.
  5. 5.0 5.1 5.2 Moore, Jeffrey M.; Clark R. Chapman & Edward B. Bierhaus et al. (2004), "Callisto", in Bagenal, F.; Dowling, T. E.; McKinnon, W. B., Jupiter: The planet, Satellites and Magnetosphere, Cambridge University Press
  6. "Classic Satellites of the Solar System". Observatorio ARVAL. http://www.oarval.org/ClasSaten.htm. Retrieved 2007-07-13.
  7. Carlson, R. W.; et al. (1999). "A Tenuous Carbon Dioxide Atmosphere on Jupiter's Moon Callisto". Science 283: 820–821. doi:10.1126/science.283.5403.820. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/16785/1/99-0186.pdf.
  8. Liang, M. C.; Lane, B. F.; Pappalardo, R. T.; et al. (2005). "Atmosphere of Callisto". Journal of Geophysics Research 110: E02003. doi:10.1029/2004JE002322. http://yly-mac.gps.caltech.edu/ReprintsYLY/N164Liang_Callisto%2005/Liang_callisto_05.pdf.
  9. Cox, Brian; Cohen, Andrew (2010). Wonders of the Solar System. HarperCollins. p. 231. ISBN 9780007386901.
  10. Musotto, Susanna; Varadi, Ferenc; Moore, William; Schubert, Gerald (2002). Numerical Simulations of the Orbits of the Galilean Satellites. 159. pp. 500–504. doi:10.1006/icar.2002.6939. http://adsabs.harvard.edu/abs/2002Icar..159..500M.
  11. Cooper, John F.; Johnson, Robert E.; Mauk, Barry H.; et al. (2001). Energetic Ion and Electron Irradiation of the Icy Galilean Satellites. 139. pp. 133–159. doi:10.1006/icar.2000.6498. http://icymoons.com/europaclass/Cooper_gllsat_irrad.pdf.
  12. Kuskov, O.L.; Kronrod, V.A. (2005). Internal structure of Europa and Callisto. 177. pp. 550-369. doi:10.1016/j.icarus.2005.04.014. http://adsabs.harvard.edu/abs/2005Icar..177..550K.
  13. Showman, Adam P.; Malhotra, Renu (1999). "The Galilean Satellites". Science 286: 77–84. doi:10.1126/science.286.5437.77. http://www.lpl.arizona.edu/~showman/publications/showman-malhotra-1999.pdf.
  14. 14.0 14.1 Greeley, R.; Klemaszewski, J. E.; Wagner, L.; et al. (2000). "Galileo views of the geology of Callisto". Planetary and Space Science 48: 829–853. http://adsabs.harvard.edu/abs/2000P%26SS...48..829G.
  15. Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; et al. (1999). Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission. 140. pp. 294–312. doi:10.1006/icar.1999.6132. http://adsabs.harvard.edu/abs/1999Icar..140..294M.
  16. Kliore, A. J.; Anabtawi, A; Herrera, R. G.; et al. (2002). "Ionosphere of Callisto from Galileo radio occultation observations". Journal of Geophysics Research 107: 1407. doi:10.1029/2002JA009365. http://adsabs.harvard.edu/abs/2002JGRA.107kSIA19K.
  17. Lipps, Jere H.; Delory, Gregory; Pitman, Joe; et al. (2004). Astrobiology of Jupiter’s Icy Moons. 5555. pp. 10. doi:10.1117/12.560356. http://learning.berkeley.edu/astrobiology/2004ppt/jupiter.pdf.
  18. Trautman, Pat; Bethke, Kristen (2003). "Revolutionary Concepts for Human Outer Planet Exploration(HOPE)". NASA. http://www.nasa-academy.org/soffen/travelgrant/bethke.pdf.