Theoretical chemistry

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Theoretical chemistry tries to explain data from chemistry experiments. It uses mathematics and computers. Theoretical chemistry predicts what happens when atoms combine to form molecules. It also predicts chemical properties (characteristics) of molecules. An important part of theoretical chemistry is quantum chemistry. This is using quantum mechanics to understand valency (the number of bonds formed by an atom of an element). Other important parts include molecular dynamics, statistical thermodynamics and theories of electrolyte solutions, reaction networks, polymerization and catalysis.

Overview[change | change source]

Theoretical chemists use a wide range of tools. These tools include analytical models (for example, LCAO-MOs to approximate the behaviors of electrons in molecules) and computational and numerical simulations.

Theorists in chemistry create theoretical models. Then, they find things that experimental chemists can measure from those models. This helps chemists to look for data that can prove a model not true. The data helps to chose between several different or opposite models.

Theorists also try to generate or modify models to fit any new data, If the data can not fit the model, chemists try to make the smallest change to the model to fit the data. In some cases, chemists throw out a model if a lot of data will not fit, over time.

Theoretical chemistry uses physics to explain or predict chemical observations. In recent years, it has been mainly about quantum chemistry (the application of quantum mechanics to problems in chemistry). The main parts of theoretical chemistry are electronic structure, dynamics, and statistical mechanics.

All of these areas are used in the process of predicting chemical reactivities. Other less central research areas include the mathematical description of bulk chemistry in various phases. Theoretical chemists want to explain chemical kinetics (the pathway that molecules combine).

Scientists call a lot of this work "computational chemistry". Computational chemistry usually uses theoretical chemistry to work on industrial and practical problems. Examples of computational chemistry are projects to approximate chemical measurements such as certain types of post Hartree-Fock, Density Functional Theory, semiempirical methods (such as PM3) or force field methods. Some chemical theorists use statistical mechanics to create a link between the microscopic phenomena of the quantum world and the macroscopic bulk properties of systems.

History[change | change source]

Modern theoretical chemistry started when Austrian physicist Erwin Schrödinger discovered the Schrödinger equation. Currently, chemists use Quantum Field Theory and Nonequilibrium Green Function Theory to successfully explain experimental data. At first, theoretical chemistry helped understand simple chemical reactions. Today, using density functional theory and molecular mechanics, theoretical chemistry now helps biochemistry, condensed matter physics, nanotechnology or molecular biology.

Major areas of theoretical chemistry[change | change source]

Quantum chemistry
The application of quantum mechanics to chemistry
Computational chemistry
The application of computer codes to chemistry
Molecular modelling
Methods for modelling molecular structures without necessarily referring to quantum mechanics. Examples are molecular docking, protein-protein docking, drug design, combinatorial chemistry.
Molecular dynamics
Application of classical mechanics for simulating the movement of the nuclei of an assembly of atoms and molecules.
Molecular mechanics
Modelling of the intra- and inter-molecular interaction potential energy surfaces via a sum of interaction forces.
Mathematical chemistry
Discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics.
Theoretical chemical kinetics
Theoretical study of the dynamical systems associated with reactive chemicals and their corresponding differential equations.
Cheminformatics (also known as chemoinformatics)
The use of computer and informational techniques, applied to a range of problems in the field of chemistry.

Other pages[change | change source]

Historically, researchers use theoretical chemistry to study:

More reading[change | change source]

  • Attila Szabo and Neil S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications; New Ed edition (1996) ISBN 0486691861, ISBN 978-0486691862