Harmonic mean
- العربية
- Azərbaycanca
- Български
- Català
- Čeština
- Dansk
- Deutsch
- Eesti
- Ελληνικά
- English
- Español
- Esperanto
- Euskara
- فارسی
- Français
- Galego
- 한국어
- Հայերեն
- हिन्दी
- Italiano
- עברית
- Қазақша
- Latina
- Lietuvių
- Magyar
- Македонски
- Nederlands
- 日本語
- Norsk bokmål
- Norsk nynorsk
- Piemontèis
- Polski
- Português
- Română
- Русский
- Slovenčina
- Slovenščina
- کوردی
- Српски / srpski
- Srpskohrvatski / српскохрватски
- Suomi
- Svenska
- தமிழ்
- Türkçe
- Українська
- اردو
- Tiếng Việt
- 粵語
- 中文
Tools
General
Print/export
In other projects
Appearance
From Simple English Wikipedia, the free encyclopedia
Harmonic means are a type of mean. It is the number of values divided by the reciprocal of the values.[1] If there are numbers
, then the harmonic mean of these numbers are
Out of the geometric mean and arithmetic mean, the harmonic mean is usually the smallest.[2]
Example
[change | change source]Let's find the harmonic mean of 2,4 and 5. There are three numbers so we will be dividing three. The reciprocals of the numbers are ,
and
. If we add the reciprocals we get
. If we divide three by this number, the result is
(approximately 3.157894737)
References
[change | change source]- ↑ "mean | Definition, Formula, & Facts | Britannica". www.britannica.com. Retrieved 2022-08-26.
- ↑ Weisstein, Eric W. "Pythagorean Means". mathworld.wolfram.com. Retrieved 2022-08-26.