Power series

In mathematics, a power series (in one variable) is an infinite series of the form

${\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}\left(x-c\right)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots }$

where an represents the coefficient of the nth term, c is a constant, and x varies around c (for this reason one sometimes speaks of the series as being centered at c). This series usually appears as the Taylor series of some known function; the Taylor series article contains many examples.

In many situations c is equal to zero, for example when considering a Maclaurin series. In those cases, the power series takes the simpler form

${\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+\cdots .}$

These power series appear primarily in analysis, but also appear in combinatorics (under the name of generating functions) and in electrical engineering (under the name of the Z-transform). The familiar decimal notation for integers can also be viewed as an example of a power series, but with the argument x fixed at 10. In number theory, the concept of p-adic numbers is also closely related to that of a power series.