DNA origami

From Simple English Wikipedia, the free encyclopedia
Flowchart summarising the process described in the text
The process of making DNA origami

DNA origami is the folding of DNA to create tiny two- and three-dimensional shapes. The base pairs make DNA a useful construction material. DNA is a well-understood material which can hold other molecules in place or to create structures all on its own.

Uses[change | change source]

Applications are in biomedical, environment, electronics, and in understanding fundamental scientific concepts and mechanisms. Notable applications include:

  • Nanofabrication: Making new materials with improved or specialized properties. For example, creating a tiny robot or device which can enter veins to deliver medicines to targeted cells. [1][2]
  • Electronics: As the size of material goes into the nanoscale which is one billionth of a meter, the properties of material change. Most of these properties are extremely useful. Some properties of DNA origami of the size range of 100 nm are utilized for their application in electronics, and high resolution imaging. Such structures can also be used to create small scale patterns for their application in electronics.[3]
  • Information storage and encryption: DNA origami structures are being tested and developed for secure information storage and its encryption.[4][5]
  • Such small-scale DNA origami nanostructures can also be combined with other small biological molecules to either study those molecules or to create a new functional structure.[6][7]

References[change | change source]

  1. Zhang, Qian; Jiang, Qiao; Li, Na; Dai, Luru; Liu, Qing; Song, Linlin; Wang, Jinye; Li, Yaqian; Tian, Jie; Ding, Baoquan; Du, Yang (2014-07-22). "DNA Origami as an In Vivo Drug Delivery Vehicle for Cancer Therapy". ACS Nano. 8 (7): 6633–6643. doi:10.1021/nn502058j. ISSN 1936-0851.
  2. Kretzmann, Jessica A.; Liedl, Anna; Monferrer, Alba; Mykhailiuk, Volodymyr; Beerkens, Samuel; Dietz, Hendrik (2023-02-23). "Gene-encoding DNA origami for mammalian cell expression". Nature Communications. 14 (1): 1017. doi:10.1038/s41467-023-36601-1. ISSN 2041-1723. PMC 9950468. PMID 36823187.
  3. Dey, Swarup; Fan, Chunhai; Gothelf, Kurt V.; Li, Jiang; Lin, Chenxiang; Liu, Longfei; Liu, Na; Nijenhuis, Minke A. D.; Saccà, Barbara; Simmel, Friedrich C.; Yan, Hao (2021-01-28). "DNA origami". Nature Reviews Methods Primers. 1 (1): 1–24. doi:10.1038/s43586-020-00009-8. ISSN 2662-8449.
  4. Dey, Swarup; Fan, Chunhai; Gothelf, Kurt V.; Li, Jiang; Lin, Chenxiang; Liu, Longfei; Liu, Na; Nijenhuis, Minke A. D.; Saccà, Barbara; Simmel, Friedrich C.; Yan, Hao (2021-01-28). "DNA origami". Nature Reviews Methods Primers. 1 (1): 1–24. doi:10.1038/s43586-020-00009-8. ISSN 2662-8449.
  5. Zhang, Yinan; Wang, Fei; Chao, Jie; Xie, Mo; Liu, Huajie; Pan, Muchen; Kopperger, Enzo; Liu, Xiaoguo; Li, Qian; Shi, Jiye; Wang, Lihua (2019-11-29). "DNA origami cryptography for secure communication". Nature Communications. 10 (1): 5469. doi:10.1038/s41467-019-13517-3. ISSN 2041-1723. PMC 6884444. PMID 31784537.
  6. Dey, Swarup; Fan, Chunhai; Gothelf, Kurt V.; Li, Jiang; Lin, Chenxiang; Liu, Longfei; Liu, Na; Nijenhuis, Minke A. D.; Saccà, Barbara; Simmel, Friedrich C.; Yan, Hao (2021-01-28). "DNA origami". Nature Reviews Methods Primers. 1 (1): 1–24. doi:10.1038/s43586-020-00009-8. ISSN 2662-8449.
  7. Knappe, Grant A.; Wamhoff, Eike-Christian; Bathe, Mark (February 2023). "Functionalizing DNA origami to investigate and interact with biological systems". Nature Reviews Materials. 8 (2): 123–138. doi:10.1038/s41578-022-00517-x. ISSN 2058-8437. PMC 10191391. PMID 37206669.