From Wikipedia, the free encyclopedia
Jump to: navigation, search

RNA is an acronym for ribonucleic acid, a nucleic acid. Many different kinds are now known.[1]

RNA is physically different from DNA: DNA contains two intercoiled strands, but RNA only contains one single strand. RNA also contains different bases from DNA. These bases are the following:

(A) Adenine
(G) Guanine
(C) Cytosine
(U) Uracil

Adenine often forms bonds with uracil, and guanine often forms bonds with cytosine. In this way, we say that adenine is complementary to uracil and that guanine is complementary to cytosine. The first three bases are also found in DNA, but uracil replaces thymine as a complement to adenine.

RNA also contains ribose as opposed to deoxyribose found in DNA. These differences result in RNA being chemically more reactive than DNA. This makes it the more suitable molecule to take part in cell reactions.

RNA is the carrier of genetic information in certain viruses, especially the retroviruses like the HIV virus. This is the only exception to the general rule that DNA is the hereditary substance.

Protein synthesis RNAs[change | change source]

Messenger RNA[change | change source]

The structure of a mature eukaryotic mRNA. A fully processed mRNA includes a 5' cap, 5' UTR, coding region, 3' UTR, and poly(A) tail. UTR = untranslated region

The main function of RNA is to carry information of amino acid sequence from the genes to where proteins are assembled on ribosomes in the cytoplasm.

This is done by messenger RNA (mRNA). A single strand of DNA is the blueprint for mRNA which is transcribed from that DNA strand. The sequence of base pairs is transcribed from DNA by an enzyme called RNA polymerase. Then the mRNA moves from the nucleus to the ribosomes in the cytoplasm to form proteins. The mRNA translates the sequence of base pairs into a sequence of amino acids to form proteins. This process is called translation.

DNA does not leave the nucleus for various reasons. DNA is a very long molecule, and is bound in with proteins, called histones, in the chromosomes. mRNA, on the other hand is able to move and to react with various cell enzymes. Once transcribed, the mRNA leaves the nucleus and is attached to tRNA which attached to the ribosomes.

Two kinds of non-coding RNAs help in the process of building proteins in the cell. They are transfer RNA (tRNA) and ribosomal RNA (rRNA).

tRNA[change | change source]

Transfer RNA (tRNA) is a short molecule of about 80 nucleotides which carries a specific amino acid to the polypeptide chain at a ribosome. Each one (there is a different tRNA for each amino acid) has a site for the amino acid to attach, and an anti-codon to match the codon on the mRNA. For example, codons UUU or UUC code for the amino acid phenylalanine.

rRNA[change | change source]

Ribosomal RNA (rRNA) is the catalytic component of the ribosomes. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 28S and 5S rRNA. Three of the rRNA molecules are synthesized in the nucleolus, and one is synthesized elsewhere. In the cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein called a ribosome. The ribosome binds mRNA and carries out protein synthesis. Several ribosomes may be attached to a single mRNA at any time.[2] rRNA is extremely abundant and makes up 80% of the 10 mg/ml RNA found in a typical eukaryotic cytoplasm.[3]

snRNAs[change | change source]

Small nuclear RNAs (snRNA) join with proteins to form spliceosomes. The spliceosomes govern alternative splicing. Genes code for proteins in bits called exons. The bits can be joined together in different ways to make different mRNAs. Thus, from one gene many proteins can be made. This is the process of alternative splicing. Any unwanted versions of the protein get chopped up by proteases, and the chemical bits re-used.

Regulatory RNAs[change | change source]

There are a number of RNAs which regulate genes, that is, they regulate the rate at which genes are transcribed or translated.[4]

miRNA[change | change source]

Micro RNAs (miRNA) act by joining an enzyme and blocking mRNA, or speeding its breakdown. This is called RNA interference.[5][6][7]

siRNA[change | change source]

Small interfering RNAs (sometimes called silencing RNAs) interfere with the expression of a specific gene. They are quite small (20/25 nucleotides) double-stranded molecules. Their discovery has caused a surge in biomedical research and drug development.[8][9]

Parasitic and other RNAs[change | change source]

Retrotransposons[change | change source]

Transposons are only one of several types of mobile genetic elements. Retrotransposons copy themselves in two stages: first from DNA to RNA by transcription, then from RNA back to DNA by reverse transcription. The DNA copy is then inserted into the genome in a new position. Retrotransposons behave very similarly to retroviruses, such as HIV.

Viral genomes[change | change source]

Viral genomes, which are usually RNA, take over the cell machinery and make both new viral RNA and the protein coat of the virus.

References[change | change source]

  1. Only the most important are described here. A complete list is available at en:List of RNAs.
  2. Cooper GC & Hausman RE (2004). The Cell: a molecular approach (3rd ed.). Sinauer. pp. 261–76, 297, 339–44. ISBN 0-87893-214-3 . OCLC 52121379 52359301 56050609 174924833 52121379 52359301 56050609 .
  3. Kampers T. et al (1996). "RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments". FEBS Letters 399 (3): 104D. doi:10.1016/S0014-5793(96)01386-5 . PMID 8985176 .
  4. Morris KV (2008). RNA and the regulation of gene expression: a hidden layer of complexity. Caister Academic Press. ISBN 978-1-904455-25-7. http://www.horizonpress.com/rnareg.
  5. The Nobel Prize in Physiology or Medicine 2006. RNA Interference. [1]
  6. Lee R.C. & Ambros V. 2001. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862-864.
  7. Lau N.C. et al 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862.
  8. Hamilton A. & Baulcombe D (1999). "A species of small antisense RNA in posttranscriptional gene silencing in plants". Science 286: 950–2. doi:10.1126/science.286.5441.950 . PMID 10542148 . First description of siRNAs.
  9. Hannon G. & Rossi J (2004). "Unlocking the potential of the human genome with RNA interference". Nature 431: 371–8. doi:10.1038/nature02870 . PMID 15372045 . http://www.nature.com/nature/journal/v431/n7006/full/nature02870.html.