Vaccine

From Wikipedia, the free encyclopedia
Jump to: navigation, search
A modern kit to vaccinate against smallpox
James Gillray, The Cow-Pock—or—the Wonderful Effects of the New Inoculation! (1802). Vaccinations eventually helped eliminate smallpox from the world.

A vaccine gives immunity to an infectious disease caused by a particular bacterium or virus. This means the vaccine makes a person less likely to get that disease. For example, the flu vaccine makes it less likely that a person will get the flu.

Vaccines are usually made from something that is alive, or was alive.

The word "vaccine" comes from the Latin words vaccīn-us (from the word vacca, meaning "cow"). In 1796, Edward Jenner used cows infected with cowpox (variolae vaccinae) to protect people against smallpox.[1] The use of vaccines is called vaccination.

History[change | change source]

Edward Jenner created the first vaccine in the 1770s. At this time, smallpox was a deadly disease. Jenner noticed that people who had already had cowpox (a disease that is related to smallpox) usually did not get smallpox. He thought that getting cowpox protected people against smallpox.

To test this idea, Jenner gave a boy cowpox. Then he infected the boy with smallpox. The boy did not get sick because he had already had cowpox. Jenner was right: having cowpox protected people against smallpox.

Because cowpox inoculation made fewer people sick than smallpox inoculation, England made smallpox inoculation illegal in 1840. In 1853, they made another law that said every child had to be vaccinated against smallpox using Jenner's vaccine.

In the 19th century, Louis Pasteur made a rabies vaccine.

In the 20th century, scientists created vaccines to protect people against diphtheria, measles, mumps, and rubella. In the 1950s, Jonas Salk created the polio vaccine.

However, vaccines still do not exist for many important diseases, like malaria and HIV.[1]

Many countries have passed compulsory vaccination laws - laws that require certain people to get vaccinated.[1] For example, in many countries, children have to be vaccinated against certain diseases in order to go to public school.

Types of vaccines[change | change source]

There are many different types of vaccines.[2]

One common type of vaccine is a "live vaccine." This type of vaccine contains a small amount of a live virus or bacteria. Before the vaccine is given, scientists weaken the virus or bacteria so it cannot make a person sick. When a person gets a live vaccine, their immune system learns to recognize and fight off that virus or bacteria. Then, if the person is exposed to the virus or bacteria in the future, their immune system will already "know" how to fight it off. Examples of live vaccines include vaccines for measles, mumps, and chickenpox.

Another common type of vaccine is an "inactivated vaccine." These vaccines contain dead viruses or bacteria. These do not cause the immune system to react as strongly as live vaccines. Because of this, people may need "booster shots" - extra doses of the vaccine, given at certain times, so their immune system can "learn" how to fight off the infection. Examples of inactivated vaccines include vaccines for pertussis (whooping cough), rabies, and hepatitis B.

Scientists can make some types of vaccines in a laboratory.

Effectiveness[change | change source]

Vaccines do not guarantee complete protection from a disease.[3] In other words, a person can get a disease that they were vaccinated against.

Sometimes, this happens because the person's immune system did not respond to the vaccine (it did not "learn" how to fight off the disease after the person got the vaccine). This may happen because the person's immune system is already weak (for example, because of diabetes, HIV infection, old age, or steroid use). It may also happen because the person's immune system cannot make the particular B cells which make the antibodies that stick to the pathogen.

Some vaccines work better than others at protecting people from diseases. There are many reasons for this:

  • Vaccination works better for some diseases than for others
  • The vaccine may be for a certain strain of a disease. If a person gets a different strain of the disease, they can still get sick.[4]
  • Vaccines usually do not have permanent effects, so a person might need many different vaccinations on a schedule. If a person missed a scheduled vaccine, they might lose their protection against a disease.
  • Some people are "non-responders" to certain vaccines. This means that their immune systems just do not create antibodies to fight off a disease, even after they are vaccinated correctly.
  • Other things, like ethnicity, age, and genetics, can affect how a person reacts to a vaccine. In some cases, larger doses are used for older people (50–75 years and up), whose immune response to a given vaccine is not as strong.[5]

Controversy[change | change source]

Since vaccines first existed, there have been people who did not agree with the idea of using vaccines.[6] Around the world, most scientists and doctors agree that the benefits of using vaccines are much greater than the risks. They say that adverse effects from vaccines are rare. They argue that not vaccinating people is a much greater risk, because vaccines prevent suffering and death from infectious diseases.[7][8]

However, there have been many controversies over using vaccines. These controversies have included arguments over:[8]

  • Whether vaccines are safe
  • Whether there is enough research showing that vaccines are safe
  • Whether it is morally right to force people to get vaccinated

Some religious groups do not allow uses of vaccines.[9]

Some political groups argue that people should be able to choose whether or not to get vaccinated. They argue that laws requiring people to get vaccinated violate individual rights.[6] In response, one study says: "Vaccine refusal not only increases the individual risk of disease but also increases the risk for the whole community".[10]

Some parents choose not to follow the regular vaccine schedule for their children. One study looked at parents of children ages six months to six years old. It found that 13% of these parents reported following an alternative vaccination schedule. However, of these parents, less than 1 out of every 5 reported refusing all vaccines. Most refused only certain vaccines, and/or delayed some vaccines until the child was older.

Parents who delay vaccines until their children are older are often concerned about their child's immune system being too young and weak to handle getting many vaccines at once.

Economics of development and patents[change | change source]

One challenge in developing vaccines is economic. The diseases that most need vaccines today - HIV, malaria, and tuberculosis - exist mostly in poor countries. Companies that make vaccines would not profit much from developing vaccines for these diseases, because many of the people who need them are too poor to pay for them. There would also be financial and other risks to these companies if they tried making new vaccines for these diseases.[11]

Throughout history, most vaccines have been developed by governments, universities, and non-profit organizations.[12] Many vaccines have been highly cost-effective and good for public health.[11] In recent decades, the number of vaccines given throughout the world has increased dramatically. This increase, particularly in the number of different vaccines given to children before they start school,[13] may be due to laws and support from governments.

This 1963 poster features the CDC's national mascot of public health, the "Wellbee", encouraging people to get an oral polio vaccine.

Another obstacle to making new vaccines is that when a new vaccine is made, the maker often files a patent on their vaccine. These patents can keep the process used to make the vaccine secret. That can make it harder to make other vaccines using the same process.[14]

Additional components in vaccines[change | change source]

Vaccines often contain other things besides the active vaccine (the weakened or dead virus or bacteria). For example, vaccines may contain:[15]

  • Aluminum salts or gels. These are added to help the immune system respond earlier, and more strongly, to the vaccine. They allow a lower dose of the vaccine to be given.
  • Antibiotics are added to some vaccines to prevent bacteria from growing while the vaccine is being made or stored.
Two workers make openings in chicken eggs as they prepare to make measles vaccines
  • Egg protein is present in influenza and yellow fever vaccines, because they are made using chicken eggs. Vaccines may also contain other proteins.
  • Formaldehyde is used to to kill bacteria for certain vaccines. It is also used to kill unwanted viruses and bacteria that might get into the vaccine while it is being made.
  • Monosodium glutamate (MSG) and 2-phenoxyethanol are used as stabilizers in a few vaccines to make sure the vaccine does not change if it is exposed to heat, light, acidity, or humidity.
  • Thimerosal is a preservative that contains mercury. It is added to vials of vaccine that contain more than one dose, to keep harmful bacteria from growing in the vaccine.

Preservatives in vaccines, such as thiomersal, phenoxyethanol, and formaldehyde, prevent serious adverse effects. Thiomersal is more effective against bacteria, lasts longer in storage, and makes the vaccine stronger, safer, and more stable (less likely to be changed by things like heat). However, in the United States, the European Union, and a few other developed countries, it is no longer used as a preservative in childhood vaccines because it contains mercury.[16] Some people have argued that thimerosal contributes to autism. However, no convincing scientific evidence says this is true.[17]

If no preservative is added to a vaccine, harmful bacteria may grow in the vaccine. For example, in 1928, Staphylococcus bacteria grew in a diphtheria vaccine that had no preservative in it. Of 21 children who got that vaccine, 12 died.[18]

A child is vaccinated against poliomyelitis. This vaccine can be given orally, such as a few drops of liquid on a piece of sugar.

Use in veterinary medicine[change | change source]

Animals are vaccinated to keep them from getting diseases, and to keep them from infecting humans with diseases.[19] Pets as well as livestock are routinely vaccinated.

In some instances, populations of wild animals may be vaccinated. Sometimes, wild animals are vaccinated by spreading vaccine-laced food in a disease-prone area. This method has been used to try to control rabies in raccoons. Where rabies occurs, laws may require dogs to get rabies vaccinations.

Dogs can also be vaccinated against many other diseases, including canine distemper, canine parvovirus, infectious canine hepatitis, adenovirus-2, leptospirosis, bordatella, canine parainfluenza virus, and Lyme disease.

Several trends in vaccine development[change | change source]

  • Nowadays, vaccines are given to people of all ages.[20][21]
  • Combinations of vaccines are becoming more common. Vaccines containing five or more components are used in many parts of the world.[20]
  • New methods of giving vaccines are being developed. Some of these new delivery systems include skin patches, aerosols given through inhalation devices, and eating genetically engineered plants.[20]
  • Scientists are designing vaccines to make people's natural immune responses stronger.[20]
  • Scientists are trying to make vaccines to help cure chronic infections, instead of only preventing disease.[20]
  • Public health officials might change their strategies for giving vaccines based on differences in how men, women, and pregnant women react to vaccines.[22]

Scientists are also working on vaccines against many noninfectious human diseases, such as cancers and autoimmune disorders.[23] For example, the experimental vaccine CYT006-AngQb has been investigated as a possible treatment for high blood pressure.[24]

References[change | change source]

  1. 1.0 1.1 1.2 Stern AM, Markel H (2005). "The history of vaccines and immunization: familiar patterns, new challenges". Health Aff 24 (3): 611–21. doi:10.1377/hlthaff.24.3.611. PMID 15886151. http://content.healthaffairs.org/cgi/content/full/24/3/611.
  2. The Main Types of Vaccines
  3. . PMID 19393917.
  4. http://bmj.bmjjournals.com/cgi/content/full/319/7206/352
  5. "Adapting Vaccines For Our Aging Immune Systems". http://www.npr.org/templates/story/story.php?storyId=123406640.
  6. 6.0 6.1 Wolfe R, Sharp L (2002). "Anti-vaccinationists past and present". BMJ 325 (7361): 430–2. doi:10.1136/bmj.325.7361.430. PMID 12193361. http://bmj.bmjjournals.com/cgi/content/full/325/7361/430.
  7. Bonhoeffer J, Heininger U (2007). "Adverse events following immunization: perception and evidence". Curr Opin Infect Dis 20 (3): 237–46. doi:10.1097/QCO.0b013e32811ebfb0. PMID 17471032.
  8. 8.0 8.1 Demicheli V. et al (2005). "Vaccines for measles, mumps and rubella in children". Cochrane Database Syst Rev 19 (4). doi:10.1002/14651858.CD004407.pub2. PMID 16235361. Lay summary – Cochrane press release (PDF) (2005-10-19).
  9. Sinal SH, Cabinum-Foeller E, Socolar R (2008). "Religion and medical neglect". South Med J 101 (7): 703–6. doi:10.1097/SMJ.0b013e31817997c9. PMID 18580731.
  10. Saad B. Omer et al 2009. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. New England Journal of Medicine. 360:1981-1988 (original), 2009 reissue. [1]
  11. 11.0 11.1 Goodman, Jesse L. (2005-05-04). "Statement of Jesse L. Goodman, M.D., M.P.H. Director, Center for Biologics, Evaluation and Research Before the Committee on Energy and Commerce United States House of Representatives". http://www.fda.gov/ola/2005/influenza0504.html. Retrieved 2008-06-15.
  12. Olesen OF, Lonnroth A, Mulligan B (2009). "Human vaccine research in the European Union". Vaccine 27 (5): 640–5. doi:10.1016/j.vaccine.2008.11.064. PMID 19059446.
  13. . PMID 19366578.
  14. Hardman Reis T (2006). "The role of intellectual property in the global challenge for immunization". J World Intellect Prop 9 (4): 413–25. doi:10.1111/j.1422-2213.2006.00284.x.
  15. CDC. "Ingredients of Vaccines - Fact Sheet". http://www.cdc.gov/vaccines/vac-gen/additives.htm. Retrieved December 20, 2009.
  16. Bigham M, Copes R (2005). "Thiomersal in vaccines: balancing the risk of adverse effects with the risk of vaccine-preventable disease". Drug Saf 28 (2): 89–101. doi:10.2165/00002018-200528020-00001. PMID 15691220.
  17. Offit PA (2007). "Thimerosal and vaccines—a cautionary tale". N Engl J Med 357 (13): 1278–9. doi:10.1056/NEJMp078187. PMID 17898096. http://content.nejm.org/cgi/content/full/357/13/1278.
  18. "Thimerosal in vaccines". Center for Biologics Evaluation and Research, U.S. Food and Drug Administration. 2007-09-06. http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/VaccineSafety/UCM096228. Retrieved 2007-10-01.
  19. . PMID 19402200.
  20. 20.0 20.1 20.2 20.3 20.4 Plotkin SA (2005). "Vaccines: past, present and future". Nat Med 11 (4 Suppl): S5–11. doi:10.1038/nm1209. PMID 15812490.
  21. Carlson B (2008). "Adults now drive growth of vaccine market". Genet Eng Biotechnol News 28 (11): 22–3. http://www.genengnews.com/articles/chitem.aspx?aid=2490.
  22. Klein SL, Jedlicka A, Pekosz A (May 2010). "The Xs and Y of immune responses to viral vaccines". Lancet Infect Dis 10 (5): 338–49. doi:10.1016/S1473-3099(10)70049-9. PMID 20417416.
  23. Spohn G, Bachmann MF (2008). "Exploiting viral properties for the rational design of modern vaccines". Expert Rev Vaccines 7 (1): 43–54. doi:10.1586/14760584.7.1.43. PMID 18251693.
  24. Samuelsson O, Herlitz H (2008). "Vaccination against high blood pressure: a new strategy". Lancet 371 (9615): 788–9. doi:10.1016/S0140-6736(08)60355-4. PMID 18328909.

Other websites[change | change source]