Fischer-Tropsch process

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Fischer–Tropsch process (or Fischer–Tropsch Synthesis or F-T) is a set of chemical reactions that converts a mixture of carbon monoxide gas and hydrogen gas into liquid hydrocarbons (fossil fuels like gasoline or kerosene).[1] The F-T process has received attention for many different reasons, for example a way to produce low-sulfur diesel.

Process chemistry[change | change source]

The Fischer–Tropsch process involves many kinds of reactions, which lead to both wanted and unwanted results. The desirable reactions create chemicals called alkanes. Sometimes the gas methane (natural gas) is produced which is generally undesirable. Sometimes different kinds of alcohol are produced in small amounts.

Other reactions relevant to F-T[change | change source]

To make the gases needed for the F-T process many steps are required. For example, all chemicals entering the reactor must have all sulfur removed. For factories that start out with methane and want to make a liquid hydrocarbon (like kerosene), another important reaction is "steam reforming", which turns the methane into CO (carbon monoxide) and H2 (hydrogen gas). This is the chemical equation for how steam reforming works.

H2O + CH4 → CO + 3 H2

The reaction above describes one molecule of H2O (steam) plus one molecule of CH4 (methane) converts into one molecule of CO(carbon monoxide) and three molecules of H2 (hydrogen gas).

Fischer-Tropsch catalysts[change | change source]

A catalyst is a chemical element you add to a process to make it go faster or speed it up. Many different catalysts can be used for the Fischer–Tropsch process. The most common catalysts are the metals cobalt, iron, and ruthenium. These metals are all transition metals. The metal nickel can also be used, but usually with unwanted results. A nickel catalyst in the reaction usually produces a lot of methane, which is undesirable.

Cobalt seems to be the most active catalyst (it has the biggest and fastest effect on the process). When the input is a natural gas Cobalt catalysts are very good for the Fischer-Tropsch process. Iron catalysts are better when the input gas is of lower quality (less pure) such as coal or biomass.[2]

Most metals used for this process (like Cobalt, Nickel, and Ruthenium) remain in their metal form when you add them to the process. However Iron catalysts behave very differently. Often iron catalysts change form and chemical phase, like converting into various oxides and carbides during the reaction. It is important to control all of the iron reactions during the process, or else the process might not work correctly.

Fischer-Tropsch catalysts are famous for being extremely sensitive to the addition of sulfur. Even a tiny amount of sulfur can have an undesirable impact on the reaction. Cobalt is more sensitive to sulfur than iron.

HTFT and LTFT[change | change source]

High-Temperature Fischer-Tropsch (or HTFT) is operated at temperatures of 330°C-350°C. HTFT uses an iron-based catalyst. Sasol used HTFT in Coal-to-Liquid plants (CTL). Low-Temperature Fischer-Tropsch (LTFT) is operated at lower temperatures and uses a cobalt-based catalyst. Shell used LTFT in an integrated Gas-to-Liquid (GTL) plant in Bintulu, Malaysia.[3]

Gasification[change | change source]

Gasification refers to converting chemical compounds into gas. Some F-T factories use coal, biomass or other solid compounds as a starting point. Before these factories can start their F-T process, they must turn the solids into gases like CO, H2, and alkanes. This process is called gasification. The gas collected from coal gasification often has a CO/H2 ratio of ~0.7 instead of the best ratio of ~2. This ratio can be adjusted from 0.7 to 2.0 using the water-gas-shift-reaction. Gasification is a dirty and expensive process. Coal-based Fischer–Tropsch factories are factories that start out with coal, apply gasification to the coal and then use the resulting gas for the Fischer-Tropsch process. These factories can produce large volumes of CO2 in this way. One of the main reasons for this approach is the large amounts of energy required for a coal-based gasification process.[4]

History[change | change source]

The original process was invented by Franz Fischer and Hans Tropsch. They were working at the Kaiser Wilhelm Institute in the 1920s, when they invented the original process. Ever since many changes have been made to improve the process. The term "Fischer-Tropsch" now is used for many processes that are similar to the original invention. Fischer and Tropsch submitted many patents, like US patent no. 1,746,464, applied 1926, published 1930.[5] It was given to the factories in Germany in 1936. Germany had an abundance of coal but very little petroleum. The F-T process enables conversion of coal into gasoline, which is important to gasoline based transport like cars, airplanes and trucks. Therefore the F-T process enabled Nazi Germany and Japan during World War II to produce substitute fuels for tanks and cars. F-T production of fuel was about 9% of German war production of fuels and 25% of the automobile fuel.[6]

The United States Bureau of Mines ran a program started by the Synthetic Liquid Fuels Act. The Bureau hired seven fuel scientists from Operation Paperclip in a Fischer-Tropsch plant in Louisiana, Missouri in 1946.[7][6] Operation Paperclip was a plan to get German scientists to work for the US during World War II.

Commercialization[change | change source]

Fluidized bed gasification with FT-pilot in Güssing, Burgenland, Austria

The F-T process has been used by many large companies, however sometimes the process is unpopular for many reasons. One such a reason is the high cost of equipment to get F-T factories operational. High operational and maintenance costs to keep the process problem free is another reason. Also, petroleum production cost is highly unpredictable. Usually, the factories are only profitable when they have access to "stranded gas". "Stranded gas" is what is referred to as sources of natural gas very far from major cities that is too expensive to pump to these cities. If the natural gas could be pumped to these cities and sold directly to consumers, it would be much more profitable for these companies. Therefore several companies are developing processes to enable practical exploitation of so-called stranded gas reserves.

Sasol[change | change source]

The largest F-T factories with the largest application of F-T technology are owned and operated by the company Sasol in South Africa. South Africa is a country with large coal reserves but not enough oil. Germany is in a similar situation. Sasol employs coal and natural gas in the F-T Process. They produce many different substitutes for oil products, and produce most of the country's diesel fuel.[8]

Shell Middle Distillate Synthesis[change | change source]

One of the largest uses of F-T technology is in Bintulu, Malaysia. This Shell factory turns natural gas into low-sulfur diesel fuels and food-grade wax. They produce approximately 12,000 barrels/day.

In October 2006, Finnish paper and pulp manufacturer UPM announced its plans to produce biodiesel by Fischer–Tropsch process. It said that it will do this along with the manufacturing processes at its European paper and pulp plants. It will use the waste biomass, from paper and pulp manufacturing processes, as the material to turn into biodiesel.[9]

Research developments[change | change source]

Carbon dioxide reuse[change | change source]

In 2009, chemists working for the U.S. Navy studied Fischer-Tropsch for making fuels with hydrogen and electrolyzing seawater. This study produced mostly methane gas, but the rest were short-chain hydrocarbons. Further refining of the hydrocarbons produced could lead to making kerosene-based jet fuel.[10]

The abundance of CO2 makes seawater look like a good different fuel source. Scientists at the U.S. Naval Research Laboratory said that, "although the gas forms only a small proportion of air – around 0.04 per cent – ocean water contains about 140 times that concentration".[10]

References[change | change source]

  1. US Fuel Supply Statistics Chart
  2. Andrei Y. Khodakov, Wei Chu, and Pascal Fongarland “Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels” Chemical Review, 2007, volume 107, pp 1692–1744. doi:10.1021/cr050972v
  3. page 33-41
  4. Oliver R. Inderwildi, Stephen J. Jenkins, David A. King (2008). "Mechanistic Studies of Hydrocarbon Combustion and Synthesis on Noble Metals". Angewandte Chemie International Edition 47 (28): 5253–5. doi:10.1002/anie.200800685. PMID 18528839.
  6. 6.0 6.1 Leckel, D., "Diesel Production from Fischer-Tropsch: The Past, the Present, and New Concepts", Energy Fuels, 2009, volume 23, 2342-2358. doi:10.1021/ef900064c
  7. German Synthetic Fuels Scientist
  8. "technologies & processes" Sasol
  9. "UPM-Kymmene says to establish beachhead in biodiesel market", NewsRoom Finland
  10. 10.0 10.1 Kleiner, Kurt (18 August 2009). "How to turn seawater into jet fuel". New Scientist. Retrieved 2009-08-20.