John Horton Conway

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
John H. Conway
John H Conway 2005 (cropped).jpg
Born
John Horton Conway

(1937-12-26) 26 December 1937 (age 81)[1]
Liverpool, Lancashire, England
ResidenceUnited States
NationalityBritish
Alma materGonville and Caius College, Cambridge (BA, MA, PhD)
Known for
Awards
Scientific career
FieldsMathematics
InstitutionsPrinceton University
ThesisHomogeneous ordered sets (1964)
Doctoral advisorHarold Davenport[3]
Doctoral students Leonard Hyman Soicher[3]
Websitemath.princeton.edu/directory/john-conway

John Horton Conway FRS[2] (born 26 December 1937) is an English mathematician. He is known for his theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory.

He has also worked in many branches of recreational mathematics, mainly for the invention of the cellular automaton called the Game of Life.

Conway is a Professor Emeritus of Mathematics at Princeton University in New Jersey.[4][5][6][7][8][9][10]

References[change | change source]

  1. "CONWAY, Prof. John Horton". Who's Who 2014, A & C Black, an imprint of Bloomsbury Publishing plc, 2014; online edn, Oxford University Press.(subscription required)
  2. 2.0 2.1 The Royal Society: John Conway Biography
  3. 3.0 3.1 3.2 3.3 3.4 John Horton Conway at the Mathematics Genealogy Project
  4. Conway, J. H.; Hardin, R. H.; Sloane, N. J. A. (1996). "Packing Lines, Planes, etc.: Packings in Grassmannian Spaces". Experimental Mathematics 5 (2): 139. doi:10.1080/10586458.1996.10504585. 
  5. Template:Scopus
  6. Conway, J. H.; Sloane, N. J. A. (1990). "A new upper bound on the minimal distance of self-dual codes". IEEE Transactions on Information Theory 36 (6): 1319. doi:10.1109/18.59931. 
  7. Conway, J. H.; Sloane, N. J. A. (1993). "Self-dual codes over the integers modulo 4". Journal of Combinatorial Theory, Series A 62: 30. doi:10.1016/0097-3165(93)90070-O. 
  8. Conway, J.; Sloane, N. (1982). "Fast quantizing and decoding and algorithms for lattice quantizers and codes". IEEE Transactions on Information Theory 28 (2): 227. doi:10.1109/TIT.1982.1056484. http://neilsloane.com/doc/Me83.pdf. 
  9. Conway, J. H.; Lagarias, J. C. (1990). "Tiling with polyominoes and combinatorial group theory". Journal of Combinatorial Theory, Series A 53 (2): 183. doi:10.1016/0097-3165(90)90057-4. 
  10. MacTutor History of Mathematics archive: John Horton Conway