List of largest stars

From Simple English Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Size comparison of stars.
A quasi-star compared to many large stars (UY Scuti is not the largest star, and even Stephenson 2-18 is actually smaller than a Quasi Star but Quasi stars are hypothetical, so they are just ideas, and likely not existent).

Below is a list of the largest stars, so far discovered, ordered by radius. The unit of measurement used is the radius of the Sun (696,392 km; 432,717.927 mi).

Additional methods[change | change source]

A few stars are in the Zodiac, and the Moon sometimes passes in front of them. This allows calculating their size by their angular size and distance. This is not very reliable. Most do not, so astronomers calculate their size by their spectral type (which gives their luminosity), distance, and brightness. This is even less reliable.

Caveats[change | change source]

These objects are extremely big, thousand to millions of times the volume of our Sun, and extremely luminous. These stars also have extended atmospheres and photospheres, and are often shrouded in dust (Like Stephenson 2-18, WOH G64 , UY Scuti and VY Canis Majoris). This makes their true size uncertain. Many of these stars vary in size and brightness (like Betelguese, Antares, UY Scuti and VY Canis Majoris).

These objects are also far away, sometimes intergalactic (eg: WOH G64 is in the Large Magellanic Cloud). This makes it even harder to calculate their sizes. Most stars found will not be above 1,500 times the Sun's radius. Their mass would hardly hold together, and a lot of material would be ejected by powerful solar winds, forming the nebulae we see around them.

List[change | change source]

List of the largest stars
Star name Solar radii
(Sun = 1)
Method[a] Notes
Stephenson 2-18 (Stephenson 2 DFK 1) 2,150[1] L/Teff Located in close proximity to the extremely massive open cluster Stephenson 2 (RSGC2), where 25 other red supergiants are also located; Likely the largest star known, although some stars are possibly larger.
Orbit of Saturn 1,940-2,169 Reported for reference
UY Scuti 1,708 ± 192[2] AD The Gaia Data Release 2 directly measured UY Scuti and got a radius of 755 R respectively. However, the Gaia parallax might be unreliable due to a very high level of astrometric noise.
NML Cygni 1,640 - 2,770, 1,183[3] L/Teff NML Cyg is calculated to be between 1,640 R and 2,770 R based on a more accurate measure of its distance combined with assumptions of its temperature.[4]
WOH G64 1,540-1,730[5] L/Teff Located in the Large Magellanic Cloud
RW Cephei 1,535[source?] L/Teff RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M0), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted sizes are just estimates.
Westerlund 1-26 1,530-1,580[6] L/Teff Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
V354 Cephei 1,520[source?] L/Teff Newer estimates give a much lower size of 1,105 R. However, the star is an irregular variable, so estimates may be uncertain.
KY Cygni 1,503[source?] L/Teff Older estimates give a radius of 1,420 R.
RSGC1-F02 1,499[7]-1,549[1] L/Teff Located in the massive open cluster RSGC1.
HD 143183 (V558 Normae) 1,480[source?] AD
HV 888 (WOH S140) 1,477-1,974[8] L/Teff Located in the Large Magellanic Cloud. An older estimate suggests a smaller size of 1,353 R[9]
VV Cephei A 1,475[source?] EB VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Older estimates give up to 1,900 R☉
RSGC1-F01 1,435[7]-1,551[1] L/Teff Located in the massive open cluster RSGC1.
VY Canis Majoris 1,420[10] AD VY CMa is described as the largest star in the Milky Way although galactic red supergiants above are possibly larger but they have less accurate radius estimates.[11] Older estimates originally estimated the radius of VY CMa to be above 3,000 R,[12] or as little as 600 R.[13] The 1,420 R measure has a margin of error of ±120 R.[10]
AH Scorpii 1,411[2] AD AH Sco is a variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies.
WOH S281 1,376[8] L/Teff
IRAS 05280-6910 (LMC 582) 1,367-1,738[14] L/Teff Located in the Large Magellanic Cloud
IRAS 04509-6922 1,360[15] L/Teff Located in the Large Magellanic Cloud
W Cephei 1,320[16] AD
HR 5171 Aa 1,315[source?] AD HR 5171 A is a highly distorted star in a close binary system, losing mass to the secondary. It is also variable in temperature, thus probably also in diameter. Other estimates range from 1,315 ± 260 solar radii to 1,490 ± 540 solar radii.
SMC 18136 1,310[17] L/Teff Located in the Small Magellanic Cloud.
V774 Sagittarii 1,310[16] AD
WOH S279 1,298[8] L/Teff
SW Cephei 1,298[16] AD
RW Cygni 1,273[16] AD
Mu Cephei (Herschel's "Garnet Star") 1,260[source?]
SP77 46-44 (WOH S341) 1,258[9] L/Teff Located in the Large Magellanic Cloud
Westerlund 1-237 1,245[1] L/Teff Red supergiant within the Westerlund 1 super star cluster.
HV 2255 (WOH S97) 1,235[8] L/Teff
SMC 5092 1,220[17] L/Teff
SP77 31-18 (WOH S72) 1,211[8] L/Teff
IRC -10414 1,200[18] L/Teff IRC -10414 is a rare red supergiant companion to WR 114 that has a bow shock.
LMC 175464 1,200[17] L/Teff Located in the Large Magellanic Cloud.
LMC 135720 1,200[17] L/Teff Located in the Large Magellanic Cloud
SMC 69886 1,190[17] L/Teff
HD 90587 1,181[16] AD
RSGC1-F03 1,168[7]-1,326[1] L/Teff Located in the massive open cluster RSGC1.
EV Carinae 1,168[9] L/Teff Older estimates based on much larger distances have given higher luminosities, and consequently larger radii.[19][20]
LMC 119219 1,150[17] L/Teff Located in the Large Magellanic Cloud
WOH S264 1,149[8] L/Teff
V602 Carinae 1,142[16] AD
MY Cephei 1,135[21] L/Teff Not to be confused with Mu Cephei (see above). Older estimates have given up to 2,440 R based on much cooler temperatures.[22]
HV 2561 1,133[8] L/Teff Located in the Large Magellanic Cloud
J004035.08+404522.3 1,130-1,230[23] L/Teff Located in the Andromeda Galaxy
LMC 17338 1,122[8] L/Teff
VX Sagittarii 1,120-1,550[24] L/Teff VX Sgr is a pulsating variable with a large visual range and is calculated to vary in size from 1,350 R to 1,940 R.[25]
LMC 141430 1,110[17] L/Teff Located in the Large Magellanic Cloud
S Persei 1,109[1] L/Teff A red supergiant located in the Perseus Double Cluster. Levsque et al. 2005 calculated radii of 780 R and 1,230 R based on K-band measurements.[26] Older estimates gave up to 2,853 R based on higher luminosities.[20]
IRAS 04516-6902 1,100[15] L/Teff Located in the Large Magellanic Cloud
LMC 175746 1,100[17] L/Teff Located in the Large Magellanic Cloud
ST Cephei 1,100[16] AD
RSGC1-F08 1,088[1]-1,146[7] L/Teff Located in the massive open cluster RSGC1.
HV 11423 1,086[8] L/Teff HV 11423 is variable in spectral type (observed from K0 to M5), thus probably also in diameter. In October 1978, it was a star of M0I type.
HV 2084 1,084[8] L/Teff
LMC 174714 1,080[17] L/Teff Located in the Large Magellanic Cloud
LMC 68125 1,080[17] L/Teff Located in the Large Magellanic Cloud
SMC 49478 1,080[17] L/Teff
SMC 20133 1,080[17] L/Teff
Trumpler 27-1 1,073[27] L/Teff
SMC 8930 1,070[17] L/Teff
V366 Andromedae 1,067[16] AD
Orbit of Jupiter 1,064-1,173 Reported for reference
PZ Cassiopeiae 1,062[27] L/Teff
SMC 25879 1,060[17] L/Teff
IM Cassiopeiae 1,059[16] AD
LMC 136042 1,051[8] L/Teff Located in the Large Magellanic Cloud
LMC 142202 1,050[17] L/Teff Located in the Large Magellanic Cloud
LMC 146126 1,050[17] L/Teff Located in the Large Magellanic Cloud
RSGC1-F05 1,047[1]-1,177[7] L/Teff Located in the massive open cluster RSGC1.
SMC 10889 1,046[8] L/Teff
LMC 67982 1,040[17] L/Teff Located in the Large Magellanic Cloud
SU Persei 1,039[16] AD In the Perseus Double Cluster
HV 11262 1,030[8] L/Teff
SMC 83593 1,019[8] L/Teff
AS Cephei 1,018[16] AD
WOH S74 1,014[8] L/Teff
W Persei 1,011[1] L/Teff
LMC 143877 1,010[17] L/Teff Located in the Large Magellanic Cloud
HD 167861 1,007[16] AD
RSGC1-F12 1,005[1] L/Teff Located in the massive open cluster RSGC1.
BU Sagittarii 1,005[16] AD
RT Carinae 995[16] AD
RSGC1-F13 993[1]-1,098[7] L/Teff Located in the massive open cluster RSGC1.
NO Aurigae 991[16] AD
SMC 46497 990[17] L/Teff
LMC 140296 990[17] L/Teff Located in the Large Magellanic Cloud
SMC 55188 988[8] L/Teff
RSGC1-F09 986[7]-1,231[1] L/Teff Located in the massive open cluster RSGC1.
NR Vulpeculae 980[26] L/Teff
SMC 12322 980[17] L/Teff
LMC 177997 980[17] L/Teff Located in the Large Magellanic Cloud
HV 2236 971[8] L/Teff
SMC 59803 970[17] L/Teff
Stephenson 2-03 969[1] L/Teff
Westerlund 1-20 965[1] L/Teff Red supergiant within the Westerlund 1 super star cluster.
V396 Centauri 965[16] AD
GCIRS 7 960[28]-1,000[29] AD Located at the galactic center. Margin of possible error: ±92 R[28] or ±150 R.[29]
RSGC1-F11 955[1]-1,015[7] L/Teff Located in the massive open cluster RSGC1.
V341 Lacertae 953[16] AD
HD 155737 951[16] AD
SMC 50840 950[17] L/Teff
HU Puppis 950[16] AD
HV 894 946[8] L/Teff
J004424.94+412322.3 945-1,300[23] L/Teff Located in the Andromeda Galaxy.
RM 1-361 933[8] L/Teff
HV 916 932[8] L/Teff Located in the Large Magellanic Cloud
RSGC1-F10 931[7]-954[1] L/Teff Located in the massive open cluster RSGC1.
S Cassiopeiae 930[30][31] DSKE
WOH S71 926[8] L/Teff
IX Carinae 920[26] L/Teff
HV 2112 916[32] L/Teff Most likely candidate for a Thorne-Żytkow object.
RSGC1-F04 914[1]-1,082[7] L/Teff Located in the massive open cluster RSGC1.
CK Carinae 909[16] AD
IRAS 04498-6842 900[33] L/Teff Located in the Large Magellanic Cloud
LMC 54365 900[17] L/Teff Located in the Large Magellanic Cloud
HV 996 894[9] L/Teff Located in the Large Magellanic Cloud
NSV 25875 891[3] L/Teff
LMC 1318 891[8] L/Teff Probably the largest AGB Star.
HV 12501 890[9] L/Teff Located in the Large Magellanic Cloud
LMC 109106 890[17] L/Teff Located in the Large Magellanic Cloud
RSGC1-F06 885[7]-967[1] L/Teff Located in the massive open cluster RSGC1.
Stephenson 2-11 884[1] L/Teff
IRC -20412 882[16] AD
IRAS 05558-7000 880[15] L/Teff Located in the Large Magellanic Cloud
SMC 30616 880[17] L/Teff
LMC 64048 880[17] L/Teff Located in the Large Magellanic Cloud
V437 Scuti 874[3] L/Teff
IRAS 04407-7000 870[15] L/Teff Located in the Large Magellanic Cloud
IRAS 05329-6708 870[15] L/Teff Located in the Large Magellanic Cloud
SMC 46662 868[8] L/Teff
HV 986 867[9] L/Teff Located in the Large Magellanic Cloud
J004047.82+410936.4 860-1,010[23] L/Teff Located in the Andromeda Galaxy
AZ Cygni 861[16] AD
AZ Cephei 860[16] AD
V669 Cassiopeiae 859[3] L/Teff
HV 2360 857[9] L/Teff Located in the Large Magellanic Cloud
HV 5870 856[9] L/Teff Located in the Large Magellanic Cloud
BI Cygni 850[34]-1,240[26] L/Teff
SMC 15510 850[17] L/Teff
KW Sagittarii 850[16] AD Older estimates have given larger radii and consequently cooler temperatures.[26]
V358 Cassiopeiae 848[16] AD
BD-15 4915 841[16] AD
UV Carinae 840[16] AD
WOH S60 836[8] L/Teff
V1185 Scorpii 830[3] L/Teff
LMC 61753 830[17] L/Teff Located in the Large Magellanic Cloud
LMC 62090 830[17] L/Teff Located in the Large Magellanic Cloud
VX Aurigae 825[16] AD
V353 Puppis 824[16] AD
UW Aquilae 823[16] AD
Stephenson 2-14 821[1] L/Teff
BC Cygni 820[27] L/Teff
V362 Aurigae 819[16] AD
LMC 116895 814[8] L/Teff Located in the Large Magellanic Cloud
LMC 142199 810[17] L/Teff Located in the Large Magellanic Cloud
IRAS 05294-7104 810[15] L/Teff Located in the Large Magellanic Cloud
PMMR 41 809[8] L/Teff
HD 268850 808[8] L/Teff
YZ Persei 804[16] AD
LMC 134383 802[8] L/Teff Located in the Large Magellanic Cloud
IRAS 05402-6956 800[15] L/Teff Located in the Large Magellanic Cloud
V441 Persei 799[1] L/Teff
PMMR 34 796[8] L/Teff
BU Persei 795[1] L/Teff
BO Carinae 790[26] L/Teff
IRAS 05298-6957 790[15] L/Teff Located in the Large Magellanic Cloud
LMC 142907 790[17] L/Teff Located in the Large Magellanic Cloud
V641 Cassiopeiae 788[16] AD
HV 963 787[8] L/Teff
6 Geminorum (BU Geminorum) 787[16] AD
U Lacertae 785[27] L/Teff
SMC 11709 781[8] L/Teff
RS Persei 770[35]-831[21] AD & L/Teff In the Perseus Double Cluster. Margin of possible error: ±30 R.[35]
AV Persei 770[26] L/Teff In the Perseus Double Cluster
V355 Cephei 770[26] L/Teff Mauron et al. 2011 derive 37,000 L, which implies a size around 300 R.[19]
V517 Monocerotis 768[16] AD
HD 303250 766[16] AD
PMMR 141 762[8] L/Teff
HV 2551 762[8] L/Teff
SMC 52334 761[8] L/Teff
J004124.80+411634.7 760-1,240[23] L/Teff Located in the Andromeda Galaxy and has a possible hot companion.
V915 Scorpii 760[36][37] L/Teff
S Cephei 760[38] AD
HD 95687 758[16] AD
J004447.08+412801.7 755-825[23] L/Teff Located in the Andromeda Galaxy
Psi1 Aurigae 753[16] AD
GP Cassiopeiae 751[1] L/Teff
Outer limits of the asteroid belt 750-900 Reported for reference
SMC 11939 750[17] L/Teff
V838 Monocerotis 750[39] L/Teff A short time after the outburst V838 Mon was measured at 1,570 ± 400 R,[40] but its distance, and hence its size, have since been reduced and it proved to be a transient object that shrunk about four-fold over a few years. Like CW Leo, it has been erroneously portrayed as "Nibiru" or "Planet X" (see below).
R Cygni 745[41][42] L/Teff
RU Virginis 740[43] L/Teff
LMC 137818 740[17] L/Teff Located in the Large Magellanic Cloud
SMC 48122 740[17] L/Teff
V923 Centauri 736[16] AD
IRAS 04545-7000 730[15] L/Teff Located in the Large Magellanic Cloud
IRAS 05003-6712 730[15] L/Teff Located in the Large Magellanic Cloud
SMC 56732 730[17] L/Teff
WOH SG374 730[44] L/Teff
GU Cephei 730[16] AD
KK Persei 724[1] L/Teff
AD Persei 724[21] L/Teff
RSGC1-F07 718[1]-910[7] L/Teff Located in the massive open cluster RSGC1.
XX Persei 710[1] L/Teff Located in the Perseus Double Cluster and near the border with Andromeda.
V648 Cassiopeiae 710[26] L/Teff
Stephenson 2-04 710[1] L/Teff
Mercer 8-06 707[1] L/Teff
Antares A (Alpha Scorpii A) 707[16] (varies by 19%)[45] AD Antares was originally calculated to be over 850 R,[46][47] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.
HV 1652 706[8] L/Teff
HD 179821 704[48] DSKE HD 179821 may be a yellow hypergiant or a much less luminous star.
SMC 55681 704[8] L/Teff
V407 Puppis 703[16] AD
J004255.95+404857.5 700-785[23] L/Teff Located in the Andromeda Galaxy
V528 Carinae 700[26] L/Teff
J003950.98+405422.5 700[49] L/Teff Located in the Andromeda Galaxy
LMC 169754 700[17] L/Teff Located in the Large Magellanic Cloud
LMC 65558 700[17] L/Teff Located in the Large Magellanic Cloud
SP77 30-6 (WOH S66) 700[44] L/Teff
V770 Cassiopeiae 700[16] AD
The following stars with sizes below 700 radii are kept here for comparison
Betelgeuse (Alpha Orionis) 697[16] AD Star with the third largest apparent size after R Doradus and the Sun. Another estimate gives 955±217 R[50]
RX Telescopii 682-1,882[16] AD RX Telescopii may be as large as 1,882 R. But the lower estimate is used here.
RSGC1-F14 590[1]-697[7] L/Teff Located in the massive open cluster RSGC1.
V509 Cassiopeiae (HR 8752) 590[16] AD Yellow hypergiant, one of the rarest types of a star.
CE Tauri 587-593[51] (-608[52]) AD Can be occulted by the Moon, allowing accurate determination of its apparent diameter.
V382 Carinae 471[16] AD Yellow hypergiant, one of the rarest types of a star.
Rho Cassiopeiae 450[16] AD Yellow hypergiant, one of the rarest types of a star.
CW Leonis 390[53]-826[3] L/Teff Prototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X".
Inner limits of the asteroid belt 380 Reported for reference
IRC +10420 357[54] L/Teff A yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R based on a much cooler temperature.[3]
Mira A (Omicron Ceti) 332-402[55] AD Prototype Mira variable. De beck et al. 2010 calculates 541 R.[3]
The Pistol Star 306[56] AD Blue hypergiant, among the most massive and luminous stars known.
R Doradus 298[57] AD Star with the second largest apparent size after the Sun.
Orbit of Mars 297-358 Reported for reference
La Superba (Y Canum Venaticorum) 289[16] AD Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Sun's red giant phase 256[58] At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[59][60] Reported for reference
Eta Carinae A ~240[61] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R.[62] η Car is calculated to be between 60 R and 881 R.[63]
Orbit of Earth 215 (211-219) Reported for reference
Solar System Habitable Zone 200-520[64] (uncertain) Reported for reference
Orbit of Venus 154-157 Reported for reference
Epsilon Aurigae A (Almaaz) 143-358[65] AD ε Aur was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[66] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
Deneb (Alpha Cygni) 99.84[16] AD Prototype Alpha Cygni variable.
Peony Star 92[67] AD Candidate for most luminous star in the Milky Way.
Canopus (Alpha Carinae) 71 AD Second brightest star in the night sky.
Orbit of Mercury 66-100 Reported for reference
LBV 1806-20 46-145 L/Teff Formerly a candidate for the most luminous star in the Milky Way with 40 million L,[68] but the luminosity has been revised later only 2 million L.[69][70]
Aldebaran (Alpha Tauri) 43.06[16] AD
Polaris (Alpha Ursae Minoris) 37.5[71] AD The current northern pole star.
R136a1 28.8[72]-35.4[73] AD Also on record as the most massive and luminous star known (315 M and 8.71 million L).
Arcturus (Alpha Boötis) 24.25[16] AD Brightest star in the northern hemisphere.
HDE 226868 20-22[74] The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star.
Sun 1 The largest object in the Solar System.
Reported for reference
  1. Methods for calculating the radius:
    • AD: radius determined from angular diameter and distance
    • L/Teff: radius calculated from bolometric luminosity and effective temperature
    • DSKE: radius calculated using the disk emission
    • EB: radius determined from observations of the eclipsing binary

References[change | change source]

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65.
  2. 2.0 2.1 Arroyo-Torres, B; Wittkowski, M; Marcaide, J. M; Hauschildt, P. H (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics. 554 (A76): A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771.
  4. Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry". Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587.
  5. Jones, O. C.; Woods, P. M.; Kemper, F.; Kraemer, K. E.; Sloan, G. C.; Srinivasan, S.; Oliveira, J. M.; van Loon, J. Th.; Boyer, M. L.; Sargent, B. A.; McDonald, I.; Meixner, M.; Zijlstra, A. A.; Ruffle, P. M. E.; Lagadec, E.; Pauly, T.; Sewiło, M.; Clayton, G. C.; Volk, K. (September 2017). "The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification - III". Monthly Notices of the Royal Astronomical Society. 470 (3): 3250–3282. arXiv:1705.02709. Bibcode:2017MNRAS.470.3250J. doi:10.1093/mnras/stx1101.CS1 maint: date and year (link)
  6. Wright, Nicholas J; Wesson, Roger; Drew, Janet E; Barentsen, Geert; Barlow, Michael J; Walsh, Jeremy R; Zijlstra, Albert; Drake, Jeremy J; Eislöffel, Jochen; Farnhill, Hywel J (2014). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters. 437 (1): L1. arXiv:1309.4086. Bibcode:2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 Davies, Ben; Figer, Don F.; Law, Casey J.; Kudritzki, Rolf-Peter; Najarro, Francisco; Herrero, Artemio; MacKenty, John W. (2008). "The cool supergiant population of the massive young star cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. doi:10.1086/527350. ISSN 0004-637X.
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29 8.30 8.31 8.32 8.33 8.34 8.35 Groenewegen, M. A. T.; Sloan, G. C. (2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics. 609. arXiv:1711.07803. Bibcode:2018A&A...609A.114G. doi:10.1051/0004-6361/201731089.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555.
  10. 10.0 10.1 Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126.
  11. Alcolea, J; Bujarrabal, V; Planesas, P; Teyssier, D; Cernicharo, J; De Beck, E; Decin, L; Dominik, C; Justtanont, K; De Koter, A; Marston, A. P; Melnick, G; Menten, K. M; Neufeld, D. A; Olofsson, H; Schmidt, M; Schöier, F. L; Szczerba, R; Waters, L. B. F. M (2013). "HIFISTARSHerschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: A93. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683.
  12. Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G; Morel, S; Perrin, G; Porro, I. L; Schloerb, F. P; Townes, C. H (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal. 605 (1): 436–461. arXiv:astro-ph/0401363. Bibcode:2004ApJ...605..436M. doi:10.1086/382218.
  13. Massey, Philip; Levesque, Emily M.; Plez, Bertrand (August 2006). "Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature". The Astrophysical Journal. 646 (2): 1203–1208. doi:10.1086/505025.
  14. Matsuura, Mikako; Sargent, B.; Swinyard, Bruce; Yates, Jeremy; Royer, P.; Barlow, M. J.; Boyer, Martha; Decin, L.; Khouri, Theo; Meixner, Margaret; Van Loon, Jacco Th.; Woods, Paul M. (2016). "The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 462 (3): 2995. arXiv:1608.01729. Bibcode:2016MNRAS.462.2995M. doi:10.1093/mnras/stw1853.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 Marshall, Jonathan R; van Loon, Jacco Th; Matsuura, Mikako; Wood, Peter R; Zijlstra, Albert A; Whitelock, Patricia A (2004). "The AGB superwind speed at low metallicity". Monthly Notices of the Royal Astronomical Society. 355 (4): 1348. arXiv:astro-ph/0410120. Bibcode:2004MNRAS.355.1348M. doi:10.1111/j.1365-2966.2004.08417.x.
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 16.12 16.13 16.14 16.15 16.16 16.17 16.18 16.19 16.20 16.21 16.22 16.23 16.24 16.25 16.26 16.27 16.28 16.29 16.30 16.31 16.32 16.33 16.34 16.35 16.36 16.37 16.38 16.39 16.40 16.41 16.42 16.43 16.44 16.45 16.46 16.47 16.48 16.49 16.50 16.51 Cruzalèbes, P.; Petrov, R. G.; Robbe-Dubois, S.; Varga, J.; Burtscher, L.; Allouche, F.; Berio, P.; Hofmann, K. H.; Hron, J.; Jaffe, W.; Lagarde, S.; Lopez, B.; Matter, A.; Meilland, A.; Meisenheimer, K.; Millour, F.; Schertl, D. (2019). "A catalogue of stellar diameters and fluxes for mid-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 490 (3): 3158–3176. arXiv:1910.00542. Bibcode:2019MNRAS.490.3158C. doi:10.1093/mnras/stz2803.
  17. 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 17.18 17.19 17.20 17.21 17.22 17.23 17.24 17.25 17.26 17.27 17.28 17.29 17.30 17.31 17.32 17.33 17.34 17.35 17.36 17.37 17.38 Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417.
  18. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; MacKey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T. (2014). "IRC -10414: A bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943.
  19. 19.0 19.1 Mauron, N.; Josselin, E. (2011). "The mass-loss rates of red supergiants and the de Jager prescription". Astronomy and Astrophysics. 526: A156. arXiv:1010.5369. Bibcode:2011A&A...526A.156M. doi:10.1051/0004-6361/201013993.
  20. 20.0 20.1 De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series. 72: 259. Bibcode:1988A&AS...72..259D. ISSN 0365-0138.
  21. 21.0 21.1 21.2 Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J; Hofmann, K. -H; Meilland, A; Millour, F; Mohamed, S; Sanchez-Bermudez, J (2018). "The evolution of red supergiant mass-loss rates" (PDF). Monthly Notices of the Royal Astronomical Society. 475 (1): 55. Bibcode:2018MNRAS.475...55B. doi:10.1093/mnras/stx3174.
  22. Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60 375". Astrophysical Journal. 193: 367. Bibcode:1974ApJ...193..367F. doi:10.1086/153171.
  23. 23.0 23.1 23.2 23.3 23.4 23.5 Massey, Philip; Silva, David R; Levesque, Emily M; Plez, Bertrand; Olsen, Knut A. G; Clayton, Geoffrey C; Meynet, Georges; Maeder, Andre (2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703: 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420.
  24. Xu, Shuangjing; Zhang, Bo; Reid, Mark J; Menten, Karl M; Zheng, Xingwu; Wang, Guangli (2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859 (1): 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6.
  25. Lockwood, G.W.; Wing, R. F. (1982). "The light and spectrum variations of VX Sagittarii, an extremely cool supergiant". Monthly Notices of the Royal Astronomical Society. 198 (2): 385–404. Bibcode:1982MNRAS.198..385L. doi:10.1093/mnras/198.2.385.
  26. 26.0 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9 Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901.
  27. 27.0 27.1 27.2 27.3 Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd.
  28. 28.0 28.1 Paumard, T; Pfuhl, O; Martins, F; Kervella, P; Ott, T; Pott, J-U; Le Bouquin, JB; Breitfelder, J; Gillessen, S; Perrin, G; Burtscher, L; Haubois, X; Brandner, W (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age". Astronomy & Astrophysics. 568 (85): A85. arXiv:1406.5320. Bibcode:2014A&A...568A..85P. doi:10.1051/0004-6361/201423991.
  29. 29.0 29.1 Pott, J.-U.; Eckart, A.; Glindemann, A.; Kraus, S.; Schöde, R.; Ghez, A. M.; Woillez, J.; Weigelt, G. (2014). "First VLTI infrared spectro-interferometry on GCIRS 7". Astronomy & Astrophysics. 487: 413–418. arXiv:0805.4408. Bibcode:2008A&A...487..413P. doi:10.1051/0004-6361:200809829.
  30. Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515–527. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  31. Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics. 454 (2): L103. arXiv:astro-ph/0605664. Bibcode:2006A&A...454L.103R. doi:10.1051/0004-6361:20065285.
  32. Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  33. Garcia-Hernandez, D. A; Manchado, A; Lambert, D. L; Plez, B; Garcia-Lario, P; D'Antona, F; Lugaro, M; Karakas, A. I; van Raai, M (2009). "Rb-rich Asymptotic Giant Branch stars in the Magellanic Clouds". The Astrophysical Journal. 705: L31–L35. arXiv:0909.4391. doi:10.1088/0004-637X/705/1/L31.
  34. Josselin, E.; Plez, B. (2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353.
  35. 35.0 35.1 Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; Ten Brummelaar, T. A.; Ridgway, S. T.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Turner, N. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46.
  36. Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory. 105: 229. Bibcode:1985Obs...105..229S.
  37. Odenwald, S. F. (1986). "An IRAS survey of IR excesses in G-type stars". Astrophysical Journal. 307: 711. Bibcode:1986ApJ...307..711O. doi:10.1086/164456.
  38. Richichi, A.; Percheron, I.; Khristoforova, M. (2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (4): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. Archived from the original on 2016-03-05. Retrieved 2019-07-31.
  39. Chesneau, Olivier; Millour, Florentin; De Marco, Orsola; Bright, S. N.; Spang, Alain; Banerjee, D. P. K.; Ashok, N. M.; Kaminski, T.; Wisniewski, John P.; Meilland, Anthony; Lagadec, Eric (2014). "V838 Monocerotis: the central star and its environment a decade after outburst". Astronomy. 569: L3. arXiv:1407.5966. Bibcode:2014A&A...569L...3C. doi:10.1051/0004-6361/201424458.
  40. Lane, B. F.; Retter, A.; Thompson, R. R.; Eisner, J. A. (April 2005). "Interferometric Observations of V838 Monocerotis". The Astrophysical Journal. 622 (2): L137–L140. arXiv:astro-ph/0502293. Bibcode:2005ApJ...622L.137L. doi:10.1086/429619.
  41. Guandalini, R; Francis, Charles (2010). "Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars". Astronomy and Astrophysics. 513: A4. arXiv:1002.2458. Bibcode:2010A&A...513A...4G. doi:10.1051/0004-6361/200911764.
  42. Ramstedt, S; Schöier, F. L; Olofsson, H (2009). "Circumstellar molecular line emission from S-type AGB stars: Mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  43. Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280.
  44. 44.0 44.1 Van Loon, J. Th.; Groenewegen, M. A. T.; de Koter, A.; Trams, N. R.; Waters, L. B. F. M.; Zijlstra, A. A.; Whitelock, P. A.; Loup, C. (1999). "Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC". Astronomy and Astrophysics. 351 (2): 559–572. arXiv:astro-ph/9909416v1. Bibcode:1999A&A...351..559V.
  45. Mark J. Pecaut; Eric E. Mamajek & Eric J. Bubar (February 2012). "A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association". Astrophysical Journal. 746 (2): 154. arXiv:1112.1695. Bibcode:2012ApJ...746..154P. doi:10.1088/0004-637X/746/2/154.
  46. Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal. 145 (2): 38. Bibcode:2013AJ....145...38P. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256.
  47. Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics. 474 (1): 229–237. Bibcode:2007A&A...474..229B. doi:10.1051/0004-6361:20077308. ISSN 0004-6361.
  48. Hawkins, G. W; Skinner, C. J; Meixner, M. M; Jernigan, J. G; Arens, J. F; Keto, E; Graham, J. R (1995). "Discovery of an Extended Nebula around AFGL 2343 (HD 179821) at 10 Microns". Astrophysical Journal. 452: 314. Bibcode:1995ApJ...452..314H. doi:10.1086/176303.
  49. Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224.
  50. Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific. 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. arXiv:1109.4562. Bibcode:2010ASPC..425..103L.
  51. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614 (12): A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471.
  52. Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory. Archived from the original on August 25, 2018. Retrieved January 4, 2019.
  53. Men'shchikov1, A. B.; Balega, Y.; Blöcker, T.; Osterbart, R.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics. 392 (3): 921–929. arXiv:astro-ph/0206410. Bibcode:2002A&A...392..921M. doi:10.1051/0004-6361:20020954.
  54. Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal. 697 (1): 409–419. arXiv:0903.3714. Bibcode:2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
  55. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
  56. Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
  57. Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019). "Infrared Interferometric Three-dimensional Diagnosis of the Atmospheric Dynamics of the AGB Star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a.
  58. Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  59. Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  60. Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  61. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union. 5: 373–398. arXiv:0910.3158. Bibcode:2010HiA....15..373G. doi:10.1017/S1743921310009890.
  62. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society. 415 (3): 2020–2024. arXiv:1010.3770. Bibcode:2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
  63. D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal. 553 (837): 837. Bibcode:2001ApJ...553..837H. doi:10.1086/320948.
  64. Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8.
  65. Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D.; Zhao, M.; Che, X.; Ten Brummelaar, T.A.; Farrington, C.D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P.J.; Turner, N.; Pedretti, E.; Thureau, N. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series. 220 (1): 14. arXiv:1508.01909. Bibcode:2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14.
  66. "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
  67. Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  68. Kennedy, Meghan. "LBV 1806-20 AB?". Archived from the original on 2017-11-13. Retrieved 2017-10-28.
  69. Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal. 610 (2): L109–L112. arXiv:astro-ph/0406316. Bibcode:2004ApJ...610L.109F. doi:10.1086/423306.
  70. Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics. 538 (47): A47. arXiv:1111.6375. Bibcode:2012A&A...538A..47N. doi:10.1051/0004-6361/201118040.
  71. Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society. 449 (1): 1011–1017. arXiv:1502.06463. Bibcode:2015MNRAS.449.1011F. doi:10.1093/mnras/stv412.
  72. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565 (27): A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  73. Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  74. Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x Note: For radius, see Table 1 with d=2 kpc.