List of largest stars

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Some of the well-known stars with their apparent colors and relative sizes, including red supergiants Antares, Betelgeuse and UY Scuti.

Below is a list of the largest stars so far discovered, ordered by radius. The unit of measurement is the radius of the Sun (696,392 km; 432,717.927 mi).

This list cannot perfectly defined because most of these stars are extremely distant, and the distance is not precisely known. The sizes are best estimates but not the only estimates, and may be revised.

A few stars are in the Zodiac, and the Moon sometimes passes in front of them. This allows calculating their size by their angular size and distance. This is not very reliable. Most do not, so astronomers calculate their size by their spectral type (which gives their luminosity), distance, and brightness. This is even less reliable.

List[change | change source]

List of the largest stars
Star name Solar radii
(Sun = 1)
Method[a] Notes
Orbit of Saturn 1,940–2,169 Reported for reference
UY Scuti 1,708 ± 192[1] AD The quoted size was based on an angular diameter and distance of 2.9 kpc. Gaia Data Release 2 suggests a much closer distance and consequently smaller radius.
WOH G64 1,540[2]–1,730[3] L/Teff This would be the largest star in the LMC, but is unusual in position and motion and might still be a foreground halo giant.
RW Cephei 1,535[4][5] L/Teff RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted size is just an estimate.
Westerlund 1-26 1,530–1,580[6] (–2,550) [7] L/Teff Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
HD 143183 1,480[8]–1,830[9] L/Teff
VY Canis Majoris 1,420 ± 120[10] AD Previously thought as the largest known star,[11] however its parameters that made it the largest are now obsolete. It has since been measured more accurately by Wittkowski et al. using the Very Large Telescope, which gives the quoted size.[12]
KY Cygni 1,420–2,850 [13] L/Teff The upper estimate is due to an unusual K-band measurement and thought to be an artifact of a reddening correction error, and is thought to be against stellar evolutionary theory. The lower estimate is consistent with other stars in the same survey and with theoretical models.
AH Scorpii 1,411 ± 124[1] AD AH Sco is variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies.
RSGC1-F02 1,398[14] L/Teff
IRAS 04509-6922 1,360[15] L/Teff
RSGC1-F01 1,335[14] L/Teff
HR 5171 A 1,315 ± 260,[16] 1,575 ± 400[17] AD HR 5171 A is a highly distorted star in a close binary system, losing mass to the secondary, and is also variable in temperature, thus probably also in diameter. Traditionally, it is considered as the largest known yellow hypergiant, although the latest research suggests it is a red supergiant with a radius of 1,490 ± 540 R.[18]
SMC 18136 1,310 Largest star in the Small Magellanic Cloud
IRAS 05280-6910 1,260[15] - 1,738[19] L/Teff
Mu Cephei (Herschel's "Garnet Star") 1,260[20] Prototype of the obsolete class of the Mu Cephei variables and also the reddest star in the night sky in terms of the B-V color index.[21] Other recent estimates range from 650 R[22] to 1,420 R[13]
LMC 136042 1,240
BI Cygni 1,240[13] L/Teff
Westerlund 1-237 1,233[7] L/Teff
SMC 5092 1,220
S Persei 1,212 ± 124[23] AD & L/Teff A red hypergiant localed in the Perseus Double Cluster. A large radius of 1,230 R is due to an unusual K-band measurement and thought to be an artifact of a reddening correction error. A small radius of 780 R is consistent with other stars in the same survey and with theoretical models.[13]
LMC 175464 1,200
LMC 135720 1,200
IRC-10414 1,200[24] IRC -10414 is a rare red supergiant companion to WR 114 that has a bow shock.
PZ Cassiopeiae 1,190–1,940[13] L/Teff The upper estimate is due to an unusual K-band measurement and thought to be an artefact of a reddening correction error. The lower estimate is consistent with other stars in the same survey and with theoretical models, and the intermediate ones have been obtained refining the distance to this star, and thus its parameters.[25]
SMC 69886 1,190
NML Cygni 1,183[26] L/Teff
RSGC1-F05 1,177[14] L/Teff
EV Carinae 1,168[27]-2,880[28] L/Teff
RSGC1-F03 1,168[14] L/Teff
LMC 119219 1,150
RSGC1-F08 1,146[14] L/Teff
BC Cygni 1,140[13]-1,230[20] L/Teff BC Cyg is calculated to vary in size from 856 R to 1,553 R.[29]
MY Cephei 1,134[30] L/Teff One of the coolest known red supergiants.
SMC 10889 1,130
VX Sagittarii 1,120 - 1,550[31] L/Teff VX Sgr is a pulsating variable calculated to vary in size from 1,350 R to 1,940 R.[32]
LMC 141430 1,110
IRAS 04516-6902 1,100[15] L/Teff
LMC 175746 1,100
RSGC1-F13 1,098[14] L/Teff
RT Carinae 1,090[13] L/Teff
RSGC1-F04 1,082[14] L/Teff
LMC 174714 1,080
LMC 68125 1,080
SMC 49478 1,080
SMC 20133 1,080
V396 Centauri 1,070[13] L/Teff
SMC 8930 1,070
Orbit of Jupiter 1,064–1,173 Reported for reference
HV 11423 1,060–1,220[33] L/Teff HV 11423 is variable in spectral type (observed from K0 to M5), thus probably also in diameter. In October 1978, it was a star of M0I type.
CK Carinae 1,060[13] L/Teff
SMC 25879 1,060
VV Cephei A 1,050[34] - 1,900[13] VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. It is among the largest stars visible to the naked eye.
LMC 142202 1,050
LMC 146126 1,050
LMC 67982 1,040
U Lacertae 1,022[35][36] L/Teff
RSGC1-F11 1,015[14] L/Teff
W Persei 1,011[7] L/Teff
LMC 143877 1,010
KW Sagittarii 1,009[1]-1,460[13] AD & L/Teff Margin of possible error: ±142 R.[1]
RSGC1-F12 1,005[7] L/Teff
Progenitor of SN 2017eaw 1,000–2,000[37] Localed in NGC 6946
SMC 46497 990
LMC 140296 990
RSGC1-F09 986[14] L/Teff
NR Vulpeculae 980[13] L/Teff
SMC 12322 980
LMC 177997 980
SMC 59803 970
Westerlund 1-20 965[7] L/Teff
GCIRS 7 960[38]–1,000[39] AD At the galactic center. Margin of possible error: ±92 R[38] or ±150 R.[39]
Betelgeuse (Alpha Orionis) 955±217[40] AD Star with the third largest apparent size after R Doradus and the Sun. Other estimates range from 887 ± 203 R[41] to 1,180 R[42]
SMC 50840 950
J004424.94+412322.3 945–1,300[43] L/Teff Located in the Andromeda Galaxy.
RSGC1-F10 931[14] L/Teff
S Cassiopeiae 930[44][45]
IX Carinae 920[13] L/Teff
HV 2112 916[46] L/Teff Most likely candidate for a Thorne-Zytkow Object.
RSGC1-F07 910[14] L/Teff
LMC 54365 900
IRAS 04498-6842 900[47]–1,660[15] L/Teff
NSV 25875 891[26] L/Teff
LMC 109106 890
RSGC1-F06 885[14] L/Teff
LMC 116895 880
SMC 30616 880
LMC 64048 880
IRAS 05558-7000 880[15] L/Teff
V437 Scuti 874[26] L/Teff
IRAS 04407-7000 870[15] L/Teff
IRAS 05329-6708 870[15] L/Teff
V602 Carinae 860[13]–1,050[48] L/Teff & AD Margin of possible error: ±165 R.[48]
J004047.82+410936.4 860[43] L/Teff Localed in the Andromeda Galaxy
J004428.71+420601.6 860[43] L/Teff Localed in the Andromeda Galaxy
V669 Cassiopeiae 859[26] L/Teff
SMC 55681 850
SMC 15510 850
LMC 61753 830
LMC 62090 830
SMC 11709 830
V1185 Scorpii 830[26] L/Teff
LMC 142199 810
IRAS 05294-7104 810[15] L/Teff
IRAS 05402-6956 800[15] L/Teff
LMC 134383 800
Eta Carinae A (Tseen She) 800[49] Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was as large as 1,400 R.[50]
V441 Persei 799[7] L/Teff
BU Persei 795[7] L/Teff
IRAS 05298-6957 790[15] L/Teff
BO Carinae 790[13] L/Teff
LMC 142907 790
J004359.94+411330.9 785[43] L/Teff Localed in the Andromeda Galaxy
SU Persei 780[13] L/Teff In the Perseus Double Cluster
RS Persei 770[51]–1,000[13] AD & L/Teff In the Perseus Double Cluster. Margin of possible error: ±30 R.[51]
AV Persei 770[13] L/Teff In the Perseus Double Cluster
V355 Cephei 770[13] L/Teff Mauron et al. 2011 derive 37,000 L, which implies a size around 300 R.[35]
J004124.80+411634.7 760[43] L/Teff Localed in the Andromeda Galaxy
V915 Scorpii 760[52][53] L/Teff
S Cephei 760[54] AD
YZ Persei 758[7] L/Teff
J004447.08+412801.7 755[43] L/Teff Localed in the Andromeda Galaxy
GP Cassiopeiae 751[7] L/Teff
Outer limits of the asteroid belt 750–900 Reported for reference
SMC 11939 750
HD 303250 750[13] L/Teff
V382 Carinae 747[55] The brightest yellow hypergiant in the night sky, one of the rarest types of star. Other estimate ranges of 600 R to 1,100 R.[56]
RU Virginis 740[57] L/Teff
LMC 137818 740
SMC 48122 740
IRAS 04545-7000 730[15] L/Teff
IRAS 05003-6712 730[15] L/Teff
SMC 56732 730
KK Persei 724[7] L/Teff
V648 Cassiopeiae 710[13] L/Teff
XX Persei 710[7] L/Teff Located in the Perseus Double Cluster and near the border with Andromeda.
TV Geminorum 620–710[58] (–770)[13] L/Teff
HD 179821 704[59] A yellow hypergiant, although most authors consider it as a supergiant, a protoplanetary nebula or a post-AGB star with a luminosity of only 16,000 L.
J004255.95+404857.5 700[43] L/Teff Localed in the Andromeda Galaxy
J003950.98+405422.5 700[60] L/Teff Localed in the Andromeda Galaxy
LMC 169754 700
LMC 65558 700
V528 Carinae 700[13] L/Teff
RSGC1-F14 700[14] L/Teff
The following well-known stars are listed for the purpose of comparison.
V354 Cephei 690[35]-1,520[13] L/Teff
Antares A (Alpha Scorpii A) 680 AD This star appears to vary its size by 165 R. Older estimates have given radii over 800 R,[61][62] but some are likely to have been affected by asymmetry of the atmosphere and the narrow range of infrared wavelengths observed.
HR 5171 Ab 650±150[17] AD Companion of HR 5171 A.
CE Tauri 587–593[63] (–608[64]) AD Second reddest star in the night sky.[21] Can be occulted by the Moon, allowing accurate determination of its apparent diameter.
CW Leonis 500[65]–700[66] L/Teff CW Leonis is one of the mistaken identities as the claimed planet "Nibiru" or "Planet X", due to its brightness as it approaches 1st magnitude. Other estimates range from 390 R[65] to 826 R.[26]
Rho Cassiopeiae 400–500[67] Yellow hypergiant, one of the rarest types of a star.
R Leporis (Hind's "Crimson Star") 400[68]–535[69] Margin of possible error: ±90 R.[68]
V509 Cassiopeiae 400–900[70] Yellow hypergiant, one of the rarest types of a star.
Inner limits of the asteroid belt 380 Reported for reference
V838 Monocerotis 380 (in 2009)[71] A short time after the outburst V838 Mon was measured at 1,570 ± 400 R.[72] However the distance to this "L-type supergiant", and hence its size, have since been reduced and it proved to be a transient object that shrunk about four-fold over a few years. Like CW Leo, it has been erroneously portrayed as "Nibiru" or "Planet X" (see above).
R Doradus 370±50[73] Star with the second largest apparent size after the Sun.
Tail of Comet Hyakutake 360 Reported for reference
IRC +10420 357[74]–1,342[26] L/Teff A yellow hypergiant that has increased its temperature into the LBV range.
The Pistol Star 340[75] Blue hypergiant, among the most massive and luminous stars known.
Mira A (Omicron Ceti) 332–402[76] AD Prototype Mira variable. De beck et al. 2010 calculates 541 R.[26]
La Superba (Y Canum Venaticorum) 307[26]–390[77] L/Teff Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Orbit of Mars 297–358 Reported for reference
Alpha Herculis (Ras Algethi) 284±60[78] The estimate ranges from 264 R to 303 R[78]
Sun's red giant phase 256[79] The core hydrogen would be exhausted in 5.4 billion years. In 7.9 billion years, The Sun would reach the tip of the red-giant branch of the Hertzsprung–Russell diagram. (see below)
Reported for reference
Orbit of Earth 215 (211–219) Reported for reference
Deneb (Alpha Cygni) 203±17[80] Prototype Alpha Cygni variable.
Solar System Habitable Zone 200–520[81] (uncertain) Reported for reference
Orbit of Venus 154–157 Reported for reference
Epsilon Aurigae A (Almaaz) 143–358[82] ε Aur was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[83] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
S Doradus 100–380[84] Prototype S Doradus variable, even though P Cygni was the first discovered.
Peony Star 92[85] Candidate for most luminous star in the Milky Way.
Rigel A (Beta Orionis A) 78.9[86]–115[87] Margin of possible error: ±7.4 R.[86]
Canopus (Alpha Carinae) 71±4 Second brightest star in the night sky.
Orbit of Mercury 66–100 Reported for reference
LBV 1806-20 45–145 L/Teff Formerly a candidate for the most luminous star in the Milky Way with 40 million L,[88] but the luminosity has been revised later only 2–5 million L.[89][90]
Aldebaran (Alpha Tauri) 44.13±0.84[91] AD
Polaris (Alpha Ursae Minoris) 37.5[92] The current northern pole star.
R136a1 28.8[93]–35.4[94] Also on record as the most massive and luminous star known (265 - 315 M and 8.71 million L).
Arcturus (Alpha Boötis) 25.4±0.2[95] Brightest star in the northern hemisphere.
HDE 226868 20–22[96] The supergiant companion of black hole Cygnus X-1. The black hole is 500,000 times smaller than the star.
VV Cephei B 13[97]–25[98] The B-type main sequence companion of VV Cephei A.
Sun's helium burning phase 10 After the red-giant branch the Sun has approximately 120 million years of active life left.
Reported for reference
Sun 1 The largest object in the Solar System.
Reported for reference
  1. AD: radius determined from angular diameter and distance
    L/Teff: radius calculated from bolometric luminosity and effective temperature

Notes[change | change source]

References[change | change source]

  1. 1.0 1.1 1.2 1.3 Arroyo-Torres, B; Wittkowski, M; Marcaide, J. M; Hauschildt, P. H (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics 554 (A76): A76. doi:10.1051/0004-6361/201220920. 
  2. Levesque, Emily M; Massey, Philip; Plez, Bertrand; Olsen, Knut A. G (June 2009). "The Physical Properties of the Red Supergiant WOH G64: The Largest Star Known?". Astronomical Journal 137 (6): 4744. doi:10.1088/0004-6256/137/6/4744. 
  3. Ohnaka, K.; Driebe, T.; Hofmann, K. H.; Weigelt, G.; Wittkowski, M. (2009). "Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64". Proceedings of the International Astronomical Union 4: 454. doi:10.1017/S1743921308028858. 
  4. Humphreys, R. M. (1978). "Studies of luminous stars in nearby galaxies. I. Supergiants and O stars in the Milky Way". The Astrophysical Journal Supplement Series 38: 309. doi:10.1086/190559. 
  5. Davies, Ben; Kudritzki, Rolf-Peter; Figer, Donald F. (2010). "The potential of red supergiants as extragalactic abundance probes at low spectral resolution". Monthly Notices of the Royal Astronomical Society 407 (2): 1203. doi:10.1111/j.1365-2966.2010.16965.x. 
  6. Wright, Nicholas J; Wesson, Roger; Drew, Janet E; Barentsen, Geert; Barlow, Michael J; Walsh, Jeremy R; Zijlstra, Albert; Drake, Jeremy J et al. (2014). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters 437 (1): L1. doi:10.1093/mnrasl/slt127. 
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal 760: 65. doi:10.1088/0004-637X/760/1/65. 
  8. Blum, R. D; Ramirez, Solange V; Sellgren, K; Olsen, K (2003). "Really Cool Stars and the Star Formation History at the Galactic Center". The Astrophysical Journal 597: 323–346. doi:10.1086/378380. 
  9. Moffat, A. F. J. (August 1976). "Mass loss from the M 3 supergiant HD 143183 in a young compact star cluster in Norma". Astronomy and Astrophysics 50 (3): 429–434. 
  10. Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics 540: L12. doi:10.1051/0004-6361/201219126. 
  11. Humphreys, Roberta M. (2006-10-13). "VY Canis Majoris: The Astrophysical Basis of Its Luminosity". arXiv:astro-ph/0610433. https://arxiv.org/abs/astro-ph/0610433. 
  12. Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012-04). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry" (in en). Astronomy & Astrophysics 540: L12. doi:10.1051/0004-6361/201219126. ISSN 0004-6361. https://doi.org/10.1051/0004-6361/201219126. 
  13. 13.00 13.01 13.02 13.03 13.04 13.05 13.06 13.07 13.08 13.09 13.10 13.11 13.12 13.13 13.14 13.15 13.16 13.17 13.18 13.19 13.20 13.21 13.22 13.23 Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal 628 (2): 973–985. doi:10.1086/430901. 
  14. 14.00 14.01 14.02 14.03 14.04 14.05 14.06 14.07 14.08 14.09 14.10 14.11 14.12 Davies, B.; Figer, D. F.; Law, C. J.; Kudritzki, R. P.; Najarro, F.; Herrero, A.; MacKenty, J. W. (2008). "The Cool Supergiant Population of the Massive Young Star Cluster RSGC1". The Astrophysical Journal 676 (2): 1016–1028. doi:10.1086/527350. 
  15. 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 Marshall, Jonathan R; van Loon, Jacco Th; Matsuura, Mikako; Wood, Peter R; Zijlstra, Albert A; Whitelock, Patricia A (2004). "The AGB superwind speed at low metallicity". Monthly Notices of the Royal Astronomical Society 355 (4): 1348. doi:10.1111/j.1365-2966.2004.08417.x. 
  16. Chesneau, O.; Meilland, A.; Chapellier, E.; Millour, F.; Van Genderen, A. M.; Nazé, Y.; Smith, N.; Spang, A. et al. (2014). "The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase". Astronomy & Astrophysics 563: A71. doi:10.1051/0004-6361/201322421. 
  17. 17.0 17.1 Wittkowski, M.; Abellan, F. J.; Arroyo-Torres, B.; Chiavassa, A.; Guirado, J. C.; Marcaide, J. M.; Alberdi, A.; De Wit, W. J. et al. (October 2017). "Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen: Image of the close companion in front of the primary". Astronomy & Astrophysics 606 (1): L1. doi:10.1051/0004-6361/201731569. 
  18. Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C. (2017). "VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859". Astronomy & Astrophysics 597 (9): A9. doi:10.1051/0004-6361/201629349. 
  19. Levesque, Emily M; Massey, Philip; Olsen, K. A. G; Plez, Bertrand; Meynet, George; Maeder, Andre; Boyer, Martha; Decin, L et al. (2016). "The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society 462 (3): 2995–3005. doi:10.1093/mnras/stw1853. 
  20. 20.0 20.1 Josselin, E.; Plez, B. (2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics 469 (2): 671–680. doi:10.1051/0004-6361:20066353. 
  21. 21.0 21.1 Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". Google Groups.
  22. Tsuji, Takashi (2000). "Water in Emission in the Infrared Space Observatory Spectrum of the Early M Supergiant Star μ Cephei". The Astrophysical Journal Letters 540 (2): 99–102. doi:10.1086/312879. 
  23. Thompson, R. R.; Creech-Eakman, M. J. (2003). "Interferometric observations of the supergiant S Persei: Evidence for axial symmetry and the warm molecular layer". American Astronomical Society Meeting 203 203: 49.07. 
  24. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; MacKey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T. (2014). "IRC -10414: A bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society 437 (1): 843. doi:10.1093/mnras/stt1943. 
  25. Kusuno, K.; Asaki, Y.; Imai, H.; Oyama, T. (2013). "Distance and Proper Motion Measurement of the Red Supergiant, Pz Cas, in Very Long Baseline Interferometry H2O Maser Astrometry". The Astrophysical Journal 774 (2): 107. doi:10.1088/0004-637X/774/2/107. 
  26. 26.0 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics 523: A18. doi:10.1051/0004-6361/200913771. 
  27. Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics 438: 273–289. doi:10.1051/0004-6361:20042555. 
  28. De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series 72: 259. ISSN 0365-0138. 
  29. Turner, David G.; Rohanizadegan, Mina; Berdnikov, Leonid N.; Pastukhova, Elena N. (2006). "The Long-Term Behavior of the Semiregular M Supergiant Variable BC Cygni". The Publications of the Astronomical Society of the Pacific 118 (849): 1533. doi:10.1086/508905. 
  30. Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J et al. (2018). "The evolution of red supergiant mass-loss rates". Monthly Notices of the Royal Astronomical Society 475 (1): 55. 
  31. Xu, Shuangjing; Zhang, Bo; Reid, Mark J; Menten, Karl M; Zheng, Xingwu; Wang, Guangli (2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal 859 (1): 14. doi:10.3847/1538-4357/aabba6. 
  32. Lockwood, G.W.; Wing, R. F. (1982). "The light and spectrum variations of VX Sagittarii, an extremely cool supergiant". Monthly Notices of the Royal Astronomical Society 198 (2): 385–404. doi:10.1093/mnras/198.2.385. 
  33. Massey, Philip; Levesque, Emily M.; Olsen, K. A. G.; Plez, Bertrand; Skiff, B. A. (2007). "HV 11423: The Coolest Supergiant in the SMC". The Astrophysical Journal 660 (1): 301–310. doi:10.1086/513182. 
  34. Bauer, W. H.; Gull, T. R.; Bennett, P. D. (2008). "Spatial Extension in the Ultraviolet Spectrum of Vv Cephei". The Astronomical Journal 136 (3): 1312. doi:10.1088/0004-6256/136/3/1312. 
  35. 35.0 35.1 35.2 Mauron, N.; Josselin, E. (2011). "The mass-loss rates of red supergiants and the de Jager prescription". Astronomy and Astrophysics 526: A156. doi:10.1051/0004-6361/201013993. 
  36. Verhoelst, T.; Van Der Zypen, N.; Hony, S.; Decin, L.; Cami, J.; Eriksson, K. (2009). "The dust condensation sequence in red supergiant stars". Astronomy and Astrophysics 498: 127–138. doi:10.1051/0004-6361/20079063. 
  37. Levesque, Emily M; Massey, Philip; Olsen, K. A. G; Plez, Bertrand; Meynet, George; Maeder, Andre (2018). "The Dusty Progenitor Star of the Type II Supernova 2017eaw". arXiv:1806.00348 [astro-ph.SR]. 
  38. 38.0 38.1 Paumard, T; Pfuhl, O; Martins, F; Kervella, P; Ott, T; Pott, J-U; Le Bouquin, JB; Breitfelder, J et al. (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age". Astronomy & Astrophysics 568 (85): A85. doi:10.1051/0004-6361/201423991. 
  39. 39.0 39.1 Pott, J.-U.; Eckart, A.; Glindemann, A.; Kraus, S.; Schöde, R.; Ghez, A. M.; Woillez, J.; Weigelt, G. (2008). "First VLTI infrared spectro-interferometry on GCIRS 7". Astronomy & Astrophysics 487: 413–418. doi:10.1051/0004-6361/201423991. 
  40. Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. 
  41. Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2016). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal 819 (1): 7. doi:10.3847/0004-637X/819/1/7. 
  42. Lang, Kenneth R (2013-05-24). Essential Astrophysics. ISBN 9783642359637.
  43. 43.0 43.1 43.2 43.3 43.4 43.5 43.6 Massey, Philip; Silva, David R; Levesque, Emily M; Plez, Bertrand; Olsen, Knut A. G; Clayton, Geoffrey C; Meynet, Georges; Maeder, Andre (2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal 703: 420–440. doi:10.1088/0004-637X/703/1/420. 
  44. Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics 499 (2): 515–527. doi:10.1051/0004-6361/200911730. 
  45. Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics 454 (2): L103. doi:10.1051/0004-6361:20065285. 
  46. Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters 443: L94–L98. doi:10.1093/mnrasl/slu080. 
  47. Garcia-Hernandez, D. A; Manchado, A; Lambert, D. L; Plez, B; Garcia-Lario, P; D'Antona, F; Lugaro, M; Karakas, A. I et al. (2009). "Rb-rich Asymptotic Giant Branch stars in the Magellanic Clouds". The Astrophysical Journal 705: L31–L35. doi:10.1088/0004-637X/705/1/L31. 
  48. 48.0 48.1 Arroyo-Torres, B.; Wittkowski, M.; Chiavassa, A.; Scholz, M.; Freytag, B.; Marcaide, J. M.; Hauschildt, P. H.; Wood, P. R. et al. (2015). "What causes the large extensions of red supergiant atmospheres?. Comparisons of interferometric observations with 1D hydrostatic, 3D convection, and 1D pulsating model atmospheres". Astronomy & Astrophysics 575 (50): A50. doi:10.1051/0004-6361/201425212. 
  49. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union 5: 373–398. doi:10.1017/S1743921310009890. 
  50. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society 415 (3): 2020–2024. doi:10.1111/j.1365-2966.2011.18607.x. 
  51. 51.0 51.1 Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E. et al. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal 785 (1): 46. doi:10.1088/0004-637X/785/1/46. 
  52. Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory 105: 229. 
  53. Odenwald, S. F. (1986). "An IRAS survey of IR excesses in G-type stars". Astrophysical Journal 307: 711. doi:10.1086/164456. 
  54. Richichi, A.; Percheron, I.; Khristoforova, M. (2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics 431 (4): 773–777. http://vizier.u-strasbg.fr/viz-bin/VizieR-5?-out.add=.&-source=J/A%2bA/431/773/charm2&recno=2142. 
  55. "Carina Constellation". Constellation Guide. Retrieved 2017-10-28.
  56. Achmad, L. (1992). "A photometric study of the G0-4 Ia(+) hypergiant HD 96918 (V382 Carinae)". Astronomy and Astrophysics 259: 600–606. 
  57. Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics 429 (2005): 235–246. doi:10.1051/0004-6361:20041280. 
  58. Wasatonic, Richard P.; Guinan, Edward F.; Durbin, Allyn J. (2015). "V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity". Publications of the Astronomical Society of the Pacific 127 (956): 1010. doi:10.1086/683261. 
  59. Hawkins, G. W; Skinner, C. J; Meixner, M. M; Jernigan, J. G; Arens, J. F; Keto, E; Graham, J. R (1995). "Discovery of an Extended Nebula around AFGL 2343 (HD 179821) at 10 Microns". Astrophysical Journal 452: 314. doi:10.1086/176303. 
  60. Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal 826 (2): 224. doi:10.3847/0004-637X/826/2/224. 
  61. Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal 145 (2): 38. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256. 
  62. Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics 474: 229–237. doi:10.1051/0004-6361:20077308. ISSN 0004-6361. 
  63. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics 614 (12): A12. doi:10.1051/0004-6361/201731471. 
  64. Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory.
  65. 65.0 65.1 Men'shchikov, A. B.; Hofmann, K.-H.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics 392 (3): 921–929. doi:10.1051/0004-6361:20020954. 
  66. Weigelt, G. et al. (May 1998). "76mas speckle-masking interferometry of IRC+10216 with the SAO 6m telescope: Evidence for a clumpy shell structure". Astronomy and Astrophysics 333 (1998): L51–L54. 
  67. Gorlova, N.; Lobel, A.; Burgasser, A. J.; Rieke, G. H.; Ilyin, I.; Stauffer, J. R. (2006). "On the CO Near‐Infrared Band and the Line‐splitting Phenomenon in the Yellow Hypergiant ρ Cassiopeiae". The Astrophysical Journal 651 (2): 1130–1150. doi:10.1086/507590. 
  68. 68.0 68.1 Hofmann, K.-H.; Eberhardt, M.; Driebe, T.; Schertl, D.; Scholz, M.; Schoeller, M.; Weigelt, G.; Wittkowski, M. et al. (2005). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Proceedings of the 13th Cambridge Workshop on Cool Stars 560: 651. 
  69. Kaler, James B. "Hind's Crimson Star". STARS. Retrieved 2018-03-19.
  70. Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void". Astronomy & Astrophysics 546: A105. doi:10.1051/0004-6361/201117166. 
  71. Tylenda, R.; Kamiński, T.; Schmidt, M.; Kurtev, R.; Tomov, T. (2011). "High-resolution optical spectroscopy of V838 Monocerotis in 2009". Astronomy & Astrophysics 532: A138. doi:10.1051/0004-6361/201116858. 
  72. Lane, B. F.; Retter, A.; Thompson, R. R.; Eisner, J. A. (April 2005). "Interferometric Observations of V838 Monocerotis". The Astrophysical Journal 622 (2): L137–L140. doi:10.1086/429619. 
  73. Bedding, T. R.; et al. (April 1997), "The angular diameter of R Doradus: a nearby Mira-like star", Monthly Notices of the Royal Astronomical Society, 286 (4): 957–962, arXiv:astro-ph/9701021, Bibcode:1997MNRAS.286..957B, doi:10.1093/mnras/286.4.957
  74. Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal 697 (1): 409–419. doi:10.1088/0004-637X/697/1/409. 
  75. Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal 691 (2): 1816–1827. doi:10.1088/0004-637X/691/2/1816. 
  76. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H. et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics 421 (2): 703–714. doi:10.1051/0004-6361:20035826. 
  77. Luttermoser, Donald G.; Brown, Alexander (1992). "A VLA 3.6 centimeter survey of N-type carbon stars". Astrophysical Journal 384: 634. doi:10.1086/170905. 
  78. 78.0 78.1 Moravveji, Ehsan; Guinan, Edward F.; Khosroshahi, Habib; Wasatonic, Rick (2013). "The Age and Mass of the α Herculis Triple-star System from a MESA Grid of Rotating Stars with 1.3 <= M/M ⊙ <= 8.0". The Astronomical Journal 146 (6): 148. doi:10.1088/0004-6256/146/6/148. 
  79. Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus 151 (1): 130–137. doi:10.1006/icar.2001.6591. 
  80. Schiller, F.; Przybilla, N. (2008). "Quantitative spectroscopy of Deneb". Astronomy & Astrophysics 479 (3): 849–858. doi:10.1051/0004-6361:20078590. 
  81. Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters 837 (1): L4. doi:10.3847/2041-8213/aa60c8. 
  82. Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D. et al. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series 220 (1): 14. doi:10.1088/0067-0049/220/1/14. 
  83. "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
  84. Lamers, H. J. G. L. M. (February 6–10, 1995). "Proceedings of IAU Colloquium 155, Astrophysical applications of stellar pulsation". 83 : 176–191Cape Town, South Africa: Astronomical Society of the Pacific. 
  85. Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics 486 (3): 971. doi:10.1051/0004-6361:200809568. 
  86. 86.0 86.1 Moravveji, Ehsan; Guinan, Edward F.; Shultz, Matt; Williamson, Michael H.; Moya, Andres (March 2012). "Asteroseismology of the nearby SN-II Progenitor: Rigel. Part I. The MOST High-precision Photometry and Radial Velocity Monitoring". The Astrophysical Journal 747 (1): 108–115. doi:10.1088/0004-637X/747/2/108. 
  87. Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R. (2014). "The variable stellar wind of Rigel probed at high spatial and spectral resolution". Astronomy & Astrophysics 566: 18. doi:10.1051/0004-6361/201322894. A125. 
  88. Kennedy, Meghan. "LBV 1806-20 AB?". SolStation.com.
  89. Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal 610 (2): L109–L112. doi:10.1086/423306. 
  90. Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics 538 (47): A47. doi:10.1051/0004-6361/201118040. 
  91. Piau, L; Kervella, P; Dib, S; Hauschildt, P (February 2011). "Surface convection and red-giant radius measurements". Astronomy and Astrophysics 526: A100. doi:10.1051/0004-6361/201014442. 
  92. Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society 449 (1): 1011–1017. doi:10.1093/mnras/stv412. 
  93. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O. et al. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics 565 (27): A27. doi:10.1051/0004-6361/201322696. 
  94. Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society 408 (2): 731–751. doi:10.1111/j.1365-2966.2010.17167.x. 
  95. Ramírez, I.; Allende Prieto, C. (December 2011). "Fundamental Parameters and Chemical Composition of Arcturus". The Astrophysical Journal 743 (2): 135. doi:10.1088/0004-637X/743/2/135. 
  96. Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x Note: For radius, see Table 1 with d=2 kpc.
  97. Wright, K. O. (1977). "The system of VV Cephei derived from an analysis of the H-alpha line". Journal of the Royal Astronomical Society of Canada 71: 152. 
  98. Hack, M.; Engin, S.; Yilmaz, N.; Sedmak, G.; Rusconi, L.; Boehm, C. (1992). "Spectroscopic study of the atmospheric eclipsing binary VV Cephei". Astronomy and Astrophysics Supplement Series 95: 589. ISSN 0365-0138.