Moscovium
Moscovium | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /mɒˈskoʊviəm/ | |||||||||||||||||||||||||||||||||||
Mass number | [290] | |||||||||||||||||||||||||||||||||||
Moscovium in the periodic table | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Group | group 15 (pnictogens) | |||||||||||||||||||||||||||||||||||
Period | period 7 | |||||||||||||||||||||||||||||||||||
Block | p-block | |||||||||||||||||||||||||||||||||||
Electron configuration | [Rn] 5f14 6d10 7s2 7p3 (predicted)[1] (predicted) | |||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 32, 18, 5 (predicted) | |||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||
Phase at STP | solid (predicted)[1] | |||||||||||||||||||||||||||||||||||
Melting point | 670 K (400 °C, 750 °F) (predicted)[1][2] | |||||||||||||||||||||||||||||||||||
Boiling point | ~1400 K (~1100 °C, ~2000 °F) (predicted)[1] | |||||||||||||||||||||||||||||||||||
Density (near r.t.) | 13.5 g/cm3 (predicted)[2] | |||||||||||||||||||||||||||||||||||
Heat of fusion | 5.90–5.98 kJ/mol (extrapolated)[3] | |||||||||||||||||||||||||||||||||||
Heat of vaporization | 138 kJ/mol (predicted)[2] | |||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||
Oxidation states | (+1), (+3) (predicted)[1][4] | |||||||||||||||||||||||||||||||||||
Ionization energies | ||||||||||||||||||||||||||||||||||||
Atomic radius | empirical: 187 pm (predicted)[1][2] | |||||||||||||||||||||||||||||||||||
Covalent radius | 156–158 pm (extrapolated)[3] | |||||||||||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||||||||||||
Natural occurrence | synthetic | |||||||||||||||||||||||||||||||||||
CAS Number | 54085-64-2 | |||||||||||||||||||||||||||||||||||
History | ||||||||||||||||||||||||||||||||||||
Naming | After Moscow region | |||||||||||||||||||||||||||||||||||
Discovery | Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory (2003) | |||||||||||||||||||||||||||||||||||
Isotopes of moscovium | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Moscovium is a superheavy synthetic radioactive chemical element also known as eka-bismuth. It has the symbol Mc and the atomic number 115. Moscovium does not exist in nature. It is made from a fusion reaction between americium and calcium.
The element is named in honor of the Russian city of Moscow.
Moscovium is in or near the center of the theoretical island of stability. No stable isotopes of moscovium have yet been found. The most stable isotope with 184 neutrons is 299Mc. The isotope that has been made has only 175 neutrons (290Mc).
Uses
[change | change source]There is no use of Moscovium at the moment because of its radioactivity and the fact that it decays pretty quickly.
History
[change | change source]On February 2, 2004 a report that moscovium and nihonium were made was written in a journal named Physical Review C. The report was written by a team of Russian scientists at Dubna University's Joint Institute for Nuclear Research and American scientists at the Lawrence Livermore National Laboratory.[10],[11]
These people reported that they bombarded americium with calcium to make four atoms of moscovium.
Scientists of Japan also report that they have made moscovium.
In May 2006 at the Joint Institute for Nuclear Research this element was made by another method and what the final products from radioactive decay were was found by chemical analysis.
Name
[change | change source]The name was changed to Moscovium. It used to be named ununpentium.[12]
Chemical properties
[change | change source]Not enough moscovium has been made to measure its physical or chemical properties. It is thought that it would be a hard metal. It may be slightly colored.
Moscovium is in the same group as bismuth but its chemical properties will be different. The chemistry of ununpentium will be very influenced by special relativity. It will make its properties different to the other elements in the periodic table that have a smaller atomic number.[13] One important difference from bismuth is the presence of a stable oxidation state of +I (Mc+). The (Mc+) ion is thought to have chemical properties like Tl+.
In popular culture
[change | change source]Moscovium is inside or near the island of stability. This is probably why it is found in popular culture. It is more likely to be talked about in UFO conspiracy theories. [source?]
The most popular story about moscovium is from Bob Lazar. It is not pseudoscience because it is a refutable theory, however Lazar's claims are not backed by any direct experimental evidence at this time.[14]
References
[change | change source]- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
- ↑ 3.0 3.1 Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry. 85 (9). American Chemical Society: 1177–1186. doi:10.1021/j150609a021.
- ↑ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. Structure and Bonding. 21: 89–144. doi:10.1007/BFb0116498. ISBN 978-3-540-07109-9. Retrieved 4 October 2013.
- ↑ Pershina, Valeria. "Theoretical Chemistry of the Heaviest Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.). The Chemistry of Superheavy Elements (2nd ed.). Springer Science & Business Media. p. 154. ISBN 9783642374661.
- ↑ Kovrizhnykh, N. (27 January 2022). "Update on the experiments at the SHE Factory". Flerov Laboratory of Nuclear Reactions. Retrieved 28 February 2022.
- ↑ 7.0 7.1 Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (142502). American Physical Society: 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
- ↑ 8.0 8.1 Oganessian, Y.T. (2015). "Super-heavy element research". Reports on Progress in Physics. 78 (3): 036301. Bibcode:2015RPPh...78c6301O. doi:10.1088/0034-4885/78/3/036301. PMID 25746203. S2CID 37779526.
- ↑ 9.0 9.1 Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (142502). American Physical Society. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
- ↑ Oganessian, Yu. Ts; Utyonkoy, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Voinov, A. A.; Buklanov, G. V.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Patin, J. B.; Moody, K. J.; Wild, J. F.; Stoyer, M. A.; Stoyer, N. J.; Shaughnessy, D. A.; Kenneally, J. M.; Lougheed, R. W. (2004). "Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291−x115". Physical Review C. 69 (2): 021601. Bibcode:2004PhRvC..69b1601O. doi:10.1103/PhysRevC.69.021601.
- ↑ Oganessian, Yu. Ts; et al. (2005). "Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca". Physical Review C. 72 (3): 034611. Bibcode:2005PhRvC..72c4611O. doi:10.1103/PhysRevC.72.034611.
- ↑ "IUPAC Announces the Names of the Elements 113, 115, 117, and 118". IUPAC | International Union of Pure and Applied Chemistry. 2016-11-30. Retrieved 2018-12-09.
- ↑ Keller, O. L.; Nestor, C. W.; Fricke, Burkhard (1974). "Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth". Journal of Physical Chemistry. 78 (19): 1945–1949. doi:10.1021/j100612a015.
- ↑ Lazar Critique Archived 2006-12-20 at the Wayback Machine, D. L. Morgan.
Other websites
[change | change source]- Uut and Uup Add Their Atomic Mass to Periodic Table Archived 2006-09-07 at the Wayback Machine
- Apsidium - Ununpentium Archived 2008-06-12 at the Wayback Machine
- Discovery of Elements 113 and 115 Archived 2005-06-23 at the Wayback Machine
- Discovery of New Superheavy Elements 113 and 115 Archived 2006-12-30 at the Wayback Machine
- Superheavy elements
- History & Etymology
H | He | ||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||
Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||||||
Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | ||||||||||
|